假设我们有一组个人信息,我们针对人的性别进行分组统计,并进行统计每个分组中的记录数。

scala> val people = List(("male", "Mobin"), ("male", "Kpop"), ("female", "Lucy"), ("male", "Lufei"), ("female", "Amy"))
people: List[(String, String)] = List((male,Mobin), (male,Kpop), (female,Lucy), (male,Lufei), (female,Amy)) scala> val rdd = sc.parallelize(people)
rdd: org.apache.spark.rdd.RDD[(String, String)] = ParallelCollectionRDD[] at parallelize at <console>: scala> val combinByKeyRDD = rdd.combineByKey(
| (x: String) => (List(x), ),
| (peo: (List[String], Int), x : String) => (x :: peo._1, peo._2 + ),
| (sex1: (List[String], Int), sex2: (List[String], Int)) => (sex1._1 ::: sex2._1, sex1._2 + sex2._2))
combinByKeyRDD: org.apache.spark.rdd.RDD[(String, (List[String], Int))] = ShuffledRDD[] at combineByKey at <console>: scala> combinByKeyRDD.foreach(println)
(female,(List(Lucy, Amy),))
(male,(List(Mobin, Kpop, Lufei),))
scala>

输出步骤:

Partition1:
K="male" --> ("male","Mobin") --> createCombiner("Mobin") => peo1 = ( List("Mobin") , )
K="male" --> ("male","Kpop") --> mergeValue(peo1,"Kpop") => peo2 = ( "Kpop" :: peo1_1 , + ) //Key相同调用mergeValue函数对值进行合并
K="female" --> ("female","Lucy") --> createCombiner("Lucy") => peo3 = ( List("Lucy") , ) Partition2:
K="male" --> ("male","Lufei") --> createCombiner("Lufei") => peo4 = ( List("Lufei") , )
K="female" --> ("female","Amy") --> createCombiner("Amy") => peo5 = ( List("Amy") , ) Merger Partition:
K="male" --> mergeCombiners(peo2,peo4) => (List(Lufei,Kpop,Mobin))
K="female" --> mergeCombiners(peo3,peo5) => (List(Amy,Lucy))

上边的信息中,个人信息中只有一个值,如果value是元组的话,需要定义出一个type:

scala>       val people = List(("male", ("Mobin",89)),("male", ("Kpop",98)),("female", ("Lucy",99)),("male", ("Lufei",77)),("female", ("Amy",97)))
scala>       val rdd = sc.parallelize(people)
rdd: org.apache.spark.rdd.RDD[(String, (String, Int))] = ParallelCollectionRDD[] at parallelize at <console>: scala> type MVType = (String, Int)
defined type alias MVType scala> val combinByKeyRDD = rdd.combineByKey(
| (x: MVType) => (List(x), 1),
| (peo: (List[MVType], Int), x:MVType) => (x :: peo._1, peo._2 + 1),
| (sex1: (List[MVType], Int), sex2: (List[MVType], Int)) => (sex1._1 ::: sex2._1, sex1._2 + sex2._2))
combinByKeyRDD: org.apache.spark.rdd.RDD[(String, (List[(String, Int)], Int))] = ShuffledRDD[] at combineByKey at <console>: scala> combinByKeyRDD.foreach(println)
(male,(List((Mobin,), (Kpop,), (Lufei,)),))
(female,(List((Lucy,), (Amy,)),))

spark算子:combineByKey的更多相关文章

  1. (转)Spark 算子系列文章

    http://lxw1234.com/archives/2015/07/363.htm Spark算子:RDD基本转换操作(1)–map.flagMap.distinct Spark算子:RDD创建操 ...

  2. Spark算子总结及案例

    spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key-Value数据类型的Tran ...

  3. Spark算子总结(带案例)

    Spark算子总结(带案例) spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key ...

  4. UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现

      UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现   测试数据 java代码 package com.hzf.spark.study; import ...

  5. UserView--第一种方式set去重,基于Spark算子的java代码实现

    UserView--第一种方式set去重,基于Spark算子的java代码实现 测试数据 java代码 package com.hzf.spark.study; import java.util.Ha ...

  6. spark算子之DataFrame和DataSet

    前言 传统的RDD相对于mapreduce和storm提供了丰富强大的算子.在spark慢慢步入DataFrame到DataSet的今天,在算子的类型基本不变的情况下,这两个数据集提供了更为强大的的功 ...

  7. Spark算子---实战应用

    Spark算子实战应用 数据集 :http://grouplens.org/datasets/movielens/ MovieLens 1M Datase 相关数据文件 : users.dat --- ...

  8. spark算子集锦

    Spark 是大数据领域的一大利器,花时间总结了一下 Spark 常用算子,正所谓温故而知新. Spark 算子按照功能分,可以分成两大类:transform 和 action.Transform 不 ...

  9. Spark入门(六)--Spark的combineByKey、sortBykey

    spark的combineByKey combineByKey的特点 combineByKey的强大之处,在于提供了三个函数操作来操作一个函数.第一个函数,是对元数据处理,从而获得一个键值对.第二个函 ...

  10. Spark算子使用

    一.spark的算子分类 转换算子和行动算子 转换算子:在使用的时候,spark是不会真正执行,直到需要行动算子之后才会执行.在spark中每一个算子在计算之后就会产生一个新的RDD. 二.在编写sp ...

随机推荐

  1. MSF添加ms17-010的exp脚本及攻击复现

    原文地址:https://bbs.ichunqiu.com/thread-23115-1-1.html 本来今晚在准备复现最近的CVE-2017-11882,由于本人是小白一枚,不知道这么添加msf的 ...

  2. Java异常机制简介

    什么是异常? 异常一般是指程序在编译期没有问题,但是在程序运行期出现的错误,一个程序会因为出现异常而终止运行,也就是我们常说的挂掉,在多线程下,异常只会影响所在的线程,对其他线程没有影响. Java异 ...

  3. 笔记:Hibernate 持久化类标注说明

    持久化类标注 标注 @Entity:注解声明该类是一个Hibernate的持久化类 标注 @Table:指定该类映射的表 参数 name:指定映射数据库表的名称 参数 uniqueConstraint ...

  4. MySQL 中添加列、修改列以及删除列

    ALTER TABLE:添加,修改,删除表的列,约束等表的定义. 查看列:desc 表名; 修改表名:alter table t_book rename to bbb; 添加列:); 删除列:alte ...

  5. ES6中export及export default的区别

    相信很多人都使用过export.export default.import,然而它们到底有什么区别呢? 在JavaScript ES6中,export与export default均可用于导出常量.函 ...

  6. 关于换了手机后,导致原来连的fiddler抓不到新手机上的包的解决方法

    原来我们测试都是一台安卓机,一台ios机,由于机子不够,所以安卓机都是自己的手机,可以连内网,也可以连外网 但是最近这几天,不知道公司抽了什么风.把网都给限制了,只有公司的测试机,才能连内网测,结果我 ...

  7. 透析thinkphp5升级版开发框架tpframe

    这里将全面的介绍这个框架给我们开发带来的好处,让你们对它有更深层次的认识,喜欢或不喜欢的,欢迎大家前来留言讨论 一.目录层次结构 现在很多的项目,特别是大一点的项目里面,都会有很多的人参与,要进行程序 ...

  8. Java高级特性之枚举

    在Java SE5之前,我们要使用枚举类型时,通常会使用static final 定义一组int常量来标识,代码如下 public static final int MAN = 0; public s ...

  9. hibernate框架学习笔记11:Criteria查询详解

    创建实体类对象: package domain; import java.util.HashSet; import java.util.Set; //客户实体 public class Custome ...

  10. c# 动态实例化一个泛型类

    动态实例化一个类,比较常见,代码如下 namespace ConsoleApp2 { public class MyClass { } } Type classType = Type.GetType( ...