spark算子:combineByKey
假设我们有一组个人信息,我们针对人的性别进行分组统计,并进行统计每个分组中的记录数。
scala> val people = List(("male", "Mobin"), ("male", "Kpop"), ("female", "Lucy"), ("male", "Lufei"), ("female", "Amy"))
people: List[(String, String)] = List((male,Mobin), (male,Kpop), (female,Lucy), (male,Lufei), (female,Amy)) scala> val rdd = sc.parallelize(people)
rdd: org.apache.spark.rdd.RDD[(String, String)] = ParallelCollectionRDD[] at parallelize at <console>: scala> val combinByKeyRDD = rdd.combineByKey(
| (x: String) => (List(x), ),
| (peo: (List[String], Int), x : String) => (x :: peo._1, peo._2 + ),
| (sex1: (List[String], Int), sex2: (List[String], Int)) => (sex1._1 ::: sex2._1, sex1._2 + sex2._2))
combinByKeyRDD: org.apache.spark.rdd.RDD[(String, (List[String], Int))] = ShuffledRDD[] at combineByKey at <console>: scala> combinByKeyRDD.foreach(println)
(female,(List(Lucy, Amy),))
(male,(List(Mobin, Kpop, Lufei),))
scala>
输出步骤:
Partition1:
K="male" --> ("male","Mobin") --> createCombiner("Mobin") => peo1 = ( List("Mobin") , )
K="male" --> ("male","Kpop") --> mergeValue(peo1,"Kpop") => peo2 = ( "Kpop" :: peo1_1 , + ) //Key相同调用mergeValue函数对值进行合并
K="female" --> ("female","Lucy") --> createCombiner("Lucy") => peo3 = ( List("Lucy") , ) Partition2:
K="male" --> ("male","Lufei") --> createCombiner("Lufei") => peo4 = ( List("Lufei") , )
K="female" --> ("female","Amy") --> createCombiner("Amy") => peo5 = ( List("Amy") , ) Merger Partition:
K="male" --> mergeCombiners(peo2,peo4) => (List(Lufei,Kpop,Mobin))
K="female" --> mergeCombiners(peo3,peo5) => (List(Amy,Lucy))
上边的信息中,个人信息中只有一个值,如果value是元组的话,需要定义出一个type:
scala> val people = List(("male", ("Mobin",89)),("male", ("Kpop",98)),("female", ("Lucy",99)),("male", ("Lufei",77)),("female", ("Amy",97)))
scala> val rdd = sc.parallelize(people)
rdd: org.apache.spark.rdd.RDD[(String, (String, Int))] = ParallelCollectionRDD[] at parallelize at <console>: scala> type MVType = (String, Int)
defined type alias MVType scala> val combinByKeyRDD = rdd.combineByKey(
| (x: MVType) => (List(x), 1),
| (peo: (List[MVType], Int), x:MVType) => (x :: peo._1, peo._2 + 1),
| (sex1: (List[MVType], Int), sex2: (List[MVType], Int)) => (sex1._1 ::: sex2._1, sex1._2 + sex2._2))
combinByKeyRDD: org.apache.spark.rdd.RDD[(String, (List[(String, Int)], Int))] = ShuffledRDD[] at combineByKey at <console>: scala> combinByKeyRDD.foreach(println)
(male,(List((Mobin,), (Kpop,), (Lufei,)),))
(female,(List((Lucy,), (Amy,)),))
spark算子:combineByKey的更多相关文章
- (转)Spark 算子系列文章
http://lxw1234.com/archives/2015/07/363.htm Spark算子:RDD基本转换操作(1)–map.flagMap.distinct Spark算子:RDD创建操 ...
- Spark算子总结及案例
spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key-Value数据类型的Tran ...
- Spark算子总结(带案例)
Spark算子总结(带案例) spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key ...
- UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现
UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现 测试数据 java代码 package com.hzf.spark.study; import ...
- UserView--第一种方式set去重,基于Spark算子的java代码实现
UserView--第一种方式set去重,基于Spark算子的java代码实现 测试数据 java代码 package com.hzf.spark.study; import java.util.Ha ...
- spark算子之DataFrame和DataSet
前言 传统的RDD相对于mapreduce和storm提供了丰富强大的算子.在spark慢慢步入DataFrame到DataSet的今天,在算子的类型基本不变的情况下,这两个数据集提供了更为强大的的功 ...
- Spark算子---实战应用
Spark算子实战应用 数据集 :http://grouplens.org/datasets/movielens/ MovieLens 1M Datase 相关数据文件 : users.dat --- ...
- spark算子集锦
Spark 是大数据领域的一大利器,花时间总结了一下 Spark 常用算子,正所谓温故而知新. Spark 算子按照功能分,可以分成两大类:transform 和 action.Transform 不 ...
- Spark入门(六)--Spark的combineByKey、sortBykey
spark的combineByKey combineByKey的特点 combineByKey的强大之处,在于提供了三个函数操作来操作一个函数.第一个函数,是对元数据处理,从而获得一个键值对.第二个函 ...
- Spark算子使用
一.spark的算子分类 转换算子和行动算子 转换算子:在使用的时候,spark是不会真正执行,直到需要行动算子之后才会执行.在spark中每一个算子在计算之后就会产生一个新的RDD. 二.在编写sp ...
随机推荐
- 二分查找(Java实现)
二分查找:递归实现 public class BinarySearch { /** * @param arr 代查找的数组,需要有序 * @param left 查找区间的左界限 * @param r ...
- Runtime源码解析(JDK1.8)
package java.lang; import sun.reflect.CallerSensitive; import sun.reflect.Reflection; import java.io ...
- Angular.js学习范例及笔记
一.AngularJs 1.row in order.rows <ng-bind="row.name"> 2.ng-form <form action=" ...
- 设置placeholder字体的颜色
::-webkit-input-placeholder { /* WebKit browsers */ color:#999; } :-moz-placeholder { /* Mozilla Fir ...
- Angular组件——中间人模式
设计一个组件时,组件应该是内聚的,应该不依赖外部已经存在的组件,要实现这种松耦合的组件要使用中间人模式. 一.中间人模式 该组件树中除了组件1以外,每个组件都有一个父组件可以扮演中间人的角色.顶级的中 ...
- 排序算法Java实现(堆排序)
算法描述:对于给定的n个记录,初始时把这些记录看作一棵顺序存储的二叉树,然后将其调整为一个大顶堆,然后将堆的最后一个元素与堆顶元素进行交换后,堆的最后一个元素即为最大记录:接着将前(n-1)个元素重新 ...
- SSH三大框架的整合
SSH三个框架的知识点 一.Hibernate框架 1. Hibernate的核心配置文件 1.1 数据库信息.连接池配置 1.2 Hibernate信息 1.3 映射配置 1.4 Hibernate ...
- CentOS7搭建solr7.2
solr介绍 一.Solr它是一种开放源码的.基于 Lucene Java 的搜索服务器,易于加入到 Web 应用程序中. 二.Solr 提供了层面搜索(就是统计).命中醒目显示并且支持多种输出格式( ...
- 转发—Android开发常用的插件及工具
作者:蓝之风 出处:http://www.cnblogs.com/vaiyanzi/ Android开发常用的插件及工具 1.GitHub,这个不管是做安卓还是其他,只要是开发就必上的网站,也是天朝没 ...
- C语言第六周博客作业--数据类型
一.PTA实验作业 题目1: 7-6 掉入陷阱的数字 1. 本题PTA提交列表 2.设计思路 定义变量N,i,g=1表示位数,a表示各位数字相加的和,b=0,j,N1,c,d用于储存N do{ for ...