Description

给定一个无向连通图,其节点编号为 1 到 N,其边的权值为非负整数。试求出一条从 1 号节点到 N 号节点的路径,使得该路径上经过的边的权值的“XOR 和”最大。该路径可以重复经过某些节点或边,当一条边在路径中出现多次时,其权值在计算“XOR 和”时也要被重复计算相应多的次数。

直接求解上述问题比较困难,于是你决定使用非完美算法。具体来说,从 1 号节点开始,以相等的概率,随机选择与当前节点相关联的某条边,并沿这条边走到下一个节点,重复这个过程,直到走到 N 号节点为止,便得到一条从 1 号节点到 N 号节点的路径。显然得到每条这样的路径的概率是不同的并且每条这样的路径的“XOR 和”也不一样。现在请你求出该算法得到的路径的“XOR 和”的期望值。

Input

从文件input.txt中读入数据,输入文件的第一行是用空格隔开的两个正整数N和M,分别表示该图的节点数和边数。紧接着的M行,每行是用空格隔开的三个非负整数u,v和w(1≤u,v≤N,0≤w≤109),表示该图的一条边(u,v),其权值为w。输入的数据保证图连通,30%的数据满足N≤30,100%的数据满足2≤N≤100,M≤10000,但是图中可能有重边或自环。

Output

输出文件 output.txt 仅包含一个实数,表示上述算法得到的路径的“XOR 和”的期望值,要求保留三位小数。(建议使用精度较高的数据类型进行计算)

Sample Input

2 2
1 1 2
1 2 3

Sample Output

2.333

HINT

样例解释:有1/2的概率直接从1号节点走到2号节点,该路径的“XOR和”为3;有1/4的概率从1号节点走一次1号节点的自环后走到2号节点,该路径的“XOR和”为1;有1/8的概率从1号节点走两次1号节点的自环后走到2号节点,该路径的“XOR和”为3;„„;依此类推,可知“XOR和”的期望值为:3/2+1/4+3/8+1/16+3/32+„„=7/3,约等于2.333。

题解

首先看到路径$xor$值,还是选择按位做。

我们设$f_u$表示从$u$到$n$的路径异或值为$1$的概率。显然$f_n == 0$。

此外,设$w(u, v)$为$u->v$的边权($1/0$),那么有:

$$f_u = \sum_{(u,v) \in E,\ w(u,v) = 0} \frac{f_v}{degree_u} + \sum_{(u,v) \in E,\ w(u,v) = 1} \frac{1-f_v}{degree_u}$$

那么我们可以得到$n$个方程,用高斯消元求解。

可以乘上$degree_u$减小误差。

这题特殊说明一下为什么不能顺推而要逆推:

很多题解的说法是因为“如果正推的话,$1−f_i$代表的不仅从$1$到$i$异或和不为$1$的概率,还包含了从$1$不走到$i$的概率,无法转移”。

如果这样解释,那就解释不了$i$走不到$n$的情况。

我认为合理的解答是:因为$1$可以重复走多次,而$n$只能走$1$次。

 //It is made by Awson on 2017.10.21
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <stack>
#include <queue>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Abs(x) ((x) < 0 ? (-(x)) : (x))
using namespace std;
const int N = ;
const int M = ;
int st[]; int n, m, u, v, w;
struct tt {
int to, cost, next;
}edge[(M<<)+];
int path[N+], top, degree[N+];
double A[N+][N+], ans; double Gauss() {
for (int line = ; line <= n; line++) {
int max_line = line;
for (int i = line+; i <= n; i++) if (fabs(A[i][line]) > fabs(A[max_line][line])) max_line = i;
if (max_line != line) swap(A[line], A[max_line]);
for (int i = line+; i <= n; i++) {
double div = A[i][line]/A[line][line];
for (int j = line; j <= n+; j++) A[i][j] -= A[line][j]*div;
}
}
for (int i = n; i >= ; i--) {
for (int j = i+; j <= n; j++)
A[i][n+] -= A[i][j]*A[j][n+];
A[i][n+] /= A[i][i];
}
return A[][n+];
}
void add(int u, int v, int w) {
edge[++top].to = v;
edge[top].cost = w;
edge[top].next = path[u];
path[u] = top; degree[v]++;
}
void work() {
st[] = ; for (int i = ; i <= ; i++) st[i] = st[i-]<<;
scanf("%d%d", &n, &m);
for (int i = ; i <= m; i++) {
scanf("%d%d%d", &u, &v, &w);
add(u, v, w); if (u != v) add(v, u, w);
}
for (int i = ; i <= ; i++) {
memset(A, , sizeof(A));
for (int u = ; u < n; u++) {
A[u][u] = degree[u];
for (int j = path[u]; j; j = edge[j].next) {
if (st[i]&edge[j].cost) A[u][edge[j].to] += ., A[u][n+] += .;
else A[u][edge[j].to] -= .;
}
}
A[n][n] = ;
ans += Gauss()*(double)st[i];
}
printf("%.3lf\n", ans);
}
int main() {
work();
return ;
}

[HNOI 2011]XOR和路径的更多相关文章

  1. 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Stat ...

  2. BZOJ2337: [HNOI2011]XOR和路径

    题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i-& ...

  3. BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )

    一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...

  4. BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]

    2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...

  5. 【BZOJ2337】Xor和路径(高斯消元)

    [BZOJ2337]Xor和路径(高斯消元) 题面 BZOJ 题解 我应该多学点套路: 对于xor之类的位运算,要想到每一位拆开算贡献 所以,对于每一位拆开来看 好了,既然是按位来算 我们就只需要计算 ...

  6. [HNOI2011]XOR和路径 && [HNOI2013]游走

    [HNOI2011]XOR和路径 题目大意 具体题目:戳我 题目: 给定一个n个点,m条边的有重边.有自环的无向图,其中每个边都有一个边权. 现在随机选择一条1到n的路径,路径权值为这条路径上所有边权 ...

  7. 洛谷 P4151 [WC2011]最大XOR和路径 解题报告

    P4151 [WC2011]最大XOR和路径 题意 求无向带权图的最大异或路径 范围 思路还是很厉害的,上午想了好一会儿都不知道怎么做 先随便求出一颗生成树,然后每条返祖边都可以出现一个环,从的路径上 ...

  8. [WC2011]最大XOR和路径 线性基

    [WC2011]最大XOR和路径 LG传送门 需要充分发掘经过路径的性质:首先注意不一定是简单路径,但由于统计的是异或值,重复走是不会被统计到的,考虑对于任意一条从\(1\)到\(n\)的路径的有效部 ...

  9. P4151 [WC2011]最大XOR和路径

    P4151 [WC2011]最大XOR和路径 一道妙极了的题. 首先直接从1走到n 然后现在图上有很多环 所以可以在走到n之后走到环上一个点,再走一遍环,再原路返回.这样就会xor上环的权值. 然后只 ...

随机推荐

  1. JAVA入门——Generic/泛型

    在台科大的第二次JAVA作业,老师课上讲的内容是泛型. 泛型(generic),泛型是Java SE 1.5的新特性,泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数.这种参数类型可以 ...

  2. 团队作业2:需求分析&原型设计

    Deadline: 2017-11-5  22:00PM,以博客发表日期为准.   评分基准: 按时交 - 有分,检查的项目包括后文的三个方面 需求分析 原型设计 编码规范 晚交 - 0分 迟交两周以 ...

  3. 201621123057 《Java程序设计》第7周学习总结

    1. 本周学习总结 1.1 思维导图:Java图形界面总结 1.2 可选:使用常规方法总结其他上课内容. 2.书面作业 1. GUI中的事件处理 1.1 写出事件处理模型中最重要的几个关键词. 答: ...

  4. codevs 3342 绿色通道

    codevs 3342 绿色通道 http://codevs.cn/problem/3342/ 难度等级:黄金 题目描述 Description <思远高考绿色通道>(Green Pass ...

  5. Linux入门(2)_给初学者的建议

    1 学习Linux的注意事项 严格区分大小写(命令, 文件, 选项) Linux中所有内容以文件形式保存, 包括硬件 硬盘文件是/dev/sd[a-p] 光盘文件是/dev/sr0等 Linux不靠扩 ...

  6. GIT入门笔记(11)- 多种撤销修改场景和对策--实战练习

    1.检查发现目前没有变化$ git statusOn branch masternothing to commit, working tree clean $ cat lsq.txt2222 2.修改 ...

  7. C#配置文件config的使用

    做程序的时候总会有一些参数,可能会调整,这时候一般情况下我都会写在配置文件里,这样方便一点. 配置文件的读取 <?xml version="1.0" encoding=&qu ...

  8. spring4——IOC之基于注解的依赖注入(DI )

    spring容器对于Bean的创建和对象属性的依赖注入提供了注解的支持,让我们在开发中能够更加便捷的实现对象的创建和对象属性的依赖注入.一,对于Bean的创建spring容器提供了以下四个注解的支持: ...

  9. 脱upx壳--初试--单步追踪

    脱upx壳--初试--单步追踪 这里的练习题目是reversing.kr 的Easy Crack 我自己用upx加壳工具给它加了个壳,由于原文件逻辑简单,所以用它来练练手 之后用到的工具是IDA和Ol ...

  10. 剑指offer-二叉树的下一个节点

    题目描述   给定一个二叉树和其中的一个结点,请找出中序遍历顺序的下一个结点并且返回.注意,树中的结点不仅包含左右子结点,同时包含指向父结点的指针.   解题思路 分情况考虑如下: 若该节点为空,则直 ...