[LeetCode] Minimum Window Subsequence 最小窗口序列
Given strings S
and T
, find the minimum (contiguous) substring W
of S
, so that T
is a subsequence of W
.
If there is no such window in S
that covers all characters in T
, return the empty string ""
. If there are multiple such minimum-length windows, return the one with the left-most starting index.
Example 1:
Input:
S = "abcdebdde", T = "bde"
Output: "bcde"
Explanation:
"bcde" is the answer because it occurs before "bdde" which has the same length.
"deb" is not a smaller window because the elements of T in the window must occur in order.
Note:
- All the strings in the input will only contain lowercase letters.
- The length of
S
will be in the range[1, 20000]
. - The length of
T
will be in the range[1, 100]
.
这道题给了我们两个字符串S和T,让我们找出S的一个长度最短子串W,使得T是W的子序列,如果长度相同,取起始位置靠前的。清楚子串和子序列的区别,那么题意就不难理解,题目中给的例子也很好的解释了题意。我们经过研究可以发现,返回的子串的起始字母和T的起始字母一定相同,这样才能保证最短。那么你肯定会想先试试暴力搜索吧,以S中每个T的起始字母为起点,均开始搜索字符串T,然后维护一个子串长度的最小值。如果是这种思路,那么还是趁早打消念头吧,博主已经替你试过了,OJ 不依。原因也不难想,假如S中有大量的连续b,并且如果T也很长的话,这种算法实在是不高效啊。根据博主多年经验,这种玩字符串且还是 Hard 的题,十有八九都是要用动态规划 Dynamic Programming 来做的,那么就直接往 DP 上去想吧。DP 的第一步就是设计 dp 数组,像这种两个字符串的题,一般都是一个二维数组,想想该怎么定义。确定一个子串的两个关键要素是起始位置和长度,那么我们的 dp 值到底应该是定起始位置还是长度呢?That is a question! 仔细想一想,其实起始位置是长度的基础,因为我们一旦知道了起始位置,那么当前位置减去起始位置,就是长度了,所以我们 dp 值定为起始位置。那么 dp[i][j] 表示范围S中前i个字符包含范围T中前j个字符的子串的起始位置,注意这里的包含是子序列包含关系。然后就是确定长度了,有时候会使用字符串的原长度,有时候会多加1,看个人习惯吧,这里博主长度多加了个1。
OK,下面就是重中之重啦,求状态转移方程。一般来说,dp[i][j] 的值是依赖于之前已经求出的dp值的,在递归形式的解法中,dp数组也可以看作是记忆数组,从而省去了大量的重复计算,这也是 dp 解法凌驾于暴力搜索之上的主要原因。牛B的方法总是最难想出来的,dp 的状态转移方程就是其中之一。在脑子一片浆糊的情况下,博主的建议是从最简单的例子开始分析,比如 S = "b", T = "b", 那么我们就有 dp[1][1] = 0,因为S中的起始位置为0,长度为1的子串可以包含T。如果当 S = "d", T = "b",那么我们有 dp[1][1] = -1,因为我们的dp数组初始化均为 -1,表示未匹配或者无法匹配。下面来看一个稍稍复杂些的例子,S = "dbd", T = "bd",我们的dp数组是:
∅ b d
∅ ? ? ?
d ? - -
b ? -
d ?
这里的问号是边界,我们还不知道如何初给边界赋值,我们看到,为 -1 的地方是对应的字母不相等的地方。我们首先要明确的是 dp[i][j] 中的j不能大于i,因为T的长度不能大于S的长度,所以j大于i的 dp[i][j] 一定都是-1的。再来看为1的几个位置,首先是 dp[2][1] = 1,这里表示db包含b的子串起始位置为1,make sense!然后是 dp[3][1] = 1,这里表示 dbd 包含b的子串起始位置为1,没错!然后是 dp[3][2] = 1,这里表示 dbd 包含 bd 的起始位置为1,all right! 那么我们可以观察出,当 S[i] == T[j] 的时候,实际上起始位置和 dp[i - 1][j - 1] 是一样的,比如 dbd 包含 bd 的起始位置和 db 包含b的起始位置一样,所以可以继承过来。那么当 S[i] != T[j] 的时候,怎么搞?其实是和 dp[i - 1][j] 是一样的,比如 dbd 包含b的起始位置和 db 包含b的起始位置是一样的。
嗯,这就是状态转移方程的核心了,下面再来看边界怎么赋值,由于j比如小于等于i,所以第一行的第二个位置往后一定都是-1,我们只需要给第一列赋值即可。通过前面的分析,我们知道了当 S[i] == T[j] 时,我们取的是左上角的 dp 值,表示当前字母在S中的位置,由于我们dp数组提前加过1,所以第一列的数只要赋值为当前行数即可。最终的 dp 数组如下:
∅ b d
∅ - -
d - -
b -
d
为了使代码更加简洁,我们在遍历完每一行,检测如果 dp[i][n] 不为-1,说明T已经被完全包含了,且当前的位置跟起始位置都知道了,我们计算出长度来更新一个全局最小值 minLen,同时更新最小值对应的起始位置 start,最后取出这个全局最短子串,如果没有找到返回空串即可,参见代码如下:
解法一:
class Solution {
public:
string minWindow(string S, string T) {
int m = S.size(), n = T.size(), start = -, minLen = INT_MAX;
vector<vector<int>> dp(m + , vector<int>(n + , -));
for (int i = ; i <= m; ++i) dp[i][] = i;
for (int i = ; i <= m; ++i) {
for (int j = ; j <= min(i, n); ++j) {
dp[i][j] = (S[i - ] == T[j - ]) ? dp[i - ][j - ] : dp[i - ][j];
}
if (dp[i][n] != -) {
int len = i - dp[i][n];
if (minLen > len) {
minLen = len;
start = dp[i][n];
}
}
}
return (start != -) ? S.substr(start, minLen) : "";
}
};
论坛上的 danzhutest大神 提出了一种双指针的解法,其实这是优化过的暴力搜索的方法,而且居然 beat 了 100%,给跪了好嘛?!而且这双指针的跳跃方式犹如舞蹈般美妙绝伦,比那粗鄙的暴力搜索双指针不知道高到哪里去了?!举个栗子来说吧,比如当 S = "bbbbdde", T = "bde" 时,我们知道暴力搜索的双指针在S和T的第一个b匹配上之后,就开始检测S之后的字符能否包含T之后的所有字符,当匹配结束后,S的指针就会跳到第二个b开始匹配,由于有大量的重复b出现,所以每一个b都要遍历一遍,会达到平方级的复杂度,会被 OJ 无情拒绝。而下面这种修改后的算法会跳过所有重复的b,使得效率大大提升,具体是这么做的,当第一次匹配成功后,我们的双指针往前走,找到那个刚好包含T中字符的位置,比如开始指针 i = 0 时,指向S中的第一个b,指针 j = 0 时指向T中的第一个b,然后开始匹配T,当 i = 6, j = 2 时,此时完全包含了T。暴力搜索解法中此时i会回到1继续找,而这里,我们通过向前再次匹配T,会在 i = 3,j = 0 处停下,然后继续向后找,这样S中重复的b就会被跳过,从而大大的提高了效率,但是最坏情况下的时间复杂度还是 O(mn)。旋转,跳跃,我闭着眼,尘嚣看不见,你沉醉了没?博主已经沉醉在这双指针之舞中了......
解法二:
class Solution {
public:
string minWindow(string S, string T) {
int m = S.size(), n = T.size(), start = -, minLen = INT_MAX, i = , j = ;
while (i < m) {
if (S[i] == T[j]) {
if (++j == n) {
int end = i + ;
while (--j >= ) {
while (S[i--] != T[j]);
}
++i; ++j;
if (end - i < minLen) {
minLen = end - i;
start = i;
}
}
}
++i;
}
return (start != -) ? S.substr(start, minLen) : "";
}
};
类似题目:
Cheapest Flights Within K Stops
Longest Continuous Increasing Subsequence
参考资料:
https://leetcode.com/problems/minimum-window-subsequence/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Minimum Window Subsequence 最小窗口序列的更多相关文章
- [LeetCode] 727. Minimum Window Subsequence 最小窗口序列
Given strings S and T, find the minimum (contiguous) substring W of S, so that T is a subsequence of ...
- [LeetCode] 727. Minimum Window Subsequence 最小窗口子序列
Given strings S and T, find the minimum (contiguous) substring W of S, so that T is a subsequenceof ...
- [LeetCode] Minimum Window Substring 最小窗口子串
Given a string S and a string T, find the minimum window in S which will contain all the characters ...
- [LeetCode] 76. Minimum Window Substring 最小窗口子串
Given a string S and a string T, find the minimum window in S which will contain all the characters ...
- [Leetcode] minimum window substring 最小字符窗口
Given a string S and a string T, find the minimum window in S which will contain all the characters ...
- [LeetCode] Sliding Window Maximum 滑动窗口最大值
Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...
- LC 727. Minimum Window Subsequence 【lock,hard】
Given strings S and T, find the minimum (contiguous) substring W of S, so that T is a subsequenceof ...
- [leetcode]76. Minimum Window Substring最小字符串窗口
Given a string S and a string T, find the minimum window in S which will contain all the characters ...
- [leetcode]Minimum Window Substring @ Python
原题地址:https://oj.leetcode.com/problems/minimum-window-substring/ 题意: Given a string S and a string T, ...
随机推荐
- [css 揭秘]:CSS揭秘 技巧(二):多重边框
我的github地址:https://github.com/FannieGirl/ifannie/ 源码都在这上面哦! 喜欢的给我一个星吧 多重边框 问题:我们通常希望在css代码层面以更灵活的方式来 ...
- 关闭系统邮件提醒:you hava a new mail(转)
有时候,在输入某些触及到系统安全或者内核方面的命令都会提醒你: You have new mail in /var/spool/mail/root 只需要在root 用户下,不设置邮件检测即可! #e ...
- python提示import XX 不存在,如何排查错误
1.如何确定文件夹是一个包, 检查包中是否有__init__.py 文件, 在python模块的每一个包中,都有一个__init__.py文件(这个文件定义了包的属性和方法)然后是一些模块文件和子目录 ...
- linux scp 命令
scp 命令 scp 命令 意思是 secure copy 即安全拷贝,可以把它看做是 cp 命令的高级版,可以跨主机拷贝. 经常用来在局域网内不同主机之间分享文件,或者在本机与远程主机中分享文件. ...
- MySQL 操作详解
MySQL 操作详解 一.实验简介 本节实验中学习并实践 MySQL 上创建数据库.创建表.查找信息等详细的语法及参数使用方法. 二.创建并使用数据库 1. 创建并选择数据库 使用SHOW语句找出服务 ...
- 支付宝sdk集成,报系统繁忙 请稍后再试(ALI64)
移动快捷支付,往往需要集成支付宝的sdk,集成的过程相对简单,只要按照支付宝的文档,进行操作一般不会出问题. 下面主要说明一下,集成sdk后报"系统繁忙 请稍后再试(A ...
- 树莓派3启动wifi并且配置wifi
概述 树莓派3内置了wifi和蓝牙模块,我们不用像以前的版本那样,再去购买一个外接的模块练到raspberry上. 当我们第一次启动了树莓派的时候,必然使用了网线,但是之后的每一次使用,我们当然更希望 ...
- Struts2之Struts2的标签库
前言: Struts2提供了大量的标签 ,用来帮助开发表现层页面,这些表现一方面解决了美观性的需求,因为它们具有html标签一样的外观,另一方面它们解决了功能性的需求, 因为它们具有jsp脚本一样的逻 ...
- 数据恢复案例分享:MSSQL 2000 错误823
一.故障描述 MSSQL Server 2000 附加数据库错误823,附加数据库失败.数据库没有备份,不能通过备份恢复数据库,急需恢复数据库中的数据. 二.故障分析SQL Server数据库 823 ...
- 14-TypeScript简单工厂模式
在TypeScript中,要调用功能,通常在调用方通过实例化被调用方对象来调用相关方法,但这种实现在调用方和被调用方形成了强耦合的关系. 另外如果被调用方有种实现,在调用方需要根据场景去实例化不同的类 ...