Given two sentences words1, words2 (each represented as an array of strings), and a list of similar word pairs pairs, determine if two sentences are similar.

For example, words1 = ["great", "acting", "skills"] and words2 = ["fine", "drama", "talent"] are similar, if the similar word pairs are pairs = [["great", "good"], ["fine", "good"], ["acting","drama"], ["skills","talent"]].

Note that the similarity relation is transitive. For example, if "great" and "good" are similar, and "fine" and "good" are similar, then "great" and "fine" are similar.

Similarity is also symmetric. For example, "great" and "fine" being similar is the same as "fine" and "great" being similar.

Also, a word is always similar with itself. For example, the sentences words1 = ["great"], words2 = ["great"], pairs = [] are similar, even though there are no specified similar word pairs.

Finally, sentences can only be similar if they have the same number of words. So a sentence like words1 = ["great"] can never be similar to words2 = ["doubleplus","good"].

Note:

  • The length of words1 and words2 will not exceed 1000.
  • The length of pairs will not exceed 2000.
  • The length of each pairs[i] will be 2.
  • The length of each words[i] and pairs[i][j] will be in the range [1, 20].

这道题是之前那道 Sentence Similarity 的拓展,那道题说单词之间不可传递,于是乎这道题就变成可以传递了,难度就增加了。不过没有关系,还是用经典老三样来解,BFS,DFS,和 Union Find。先来看 BFS 的解法,其实这道题的本质是无向连通图的问题,首先要做的就是建立这个连通图的数据结构,对于每个结点来说,要记录所有和其相连的结点,建立每个结点和其所有相连结点集合之间的映射,比如对于这三个相似对 (a, b), (b, c),和(c, d),我们有如下的映射关系:

a -> {b}

b -> {a, c}

c -> {b, d}

d -> {c}

那么如果要验证a和d是否相似,就需要用到传递关系,a只能找到b,b可以找到a,c,为了不陷入死循环,将访问过的结点加入一个集合 visited,那么此时b只能去,c只能去d,那么说明a和d是相似的了。用for循环来比较对应位置上的两个单词,如果二者相同,那么直接跳过去比较接下来的。否则就建一个访问即可 visited,建一个队列 queue,然后把 words1 中的单词放入 queue,建一个布尔型变量 succ,标记是否找到,然后就是传统的 BFS 遍历的写法了,从队列中取元素,如果和其相连的结点中有 words2 中的对应单词,标记 succ 为 true,并 break 掉。否则就将取出的结点加入队列 queue,并且遍历其所有相连结点,将其中未访问过的结点加入队列 queue 继续循环,参见代码如下:

解法一:

class Solution {
public:
bool areSentencesSimilarTwo(vector<string>& words1, vector<string>& words2, vector<pair<string, string>> pairs) {
if (words1.size() != words2.size()) return false;
unordered_map<string, unordered_set<string>> m;
for (auto pair : pairs) {
m[pair.first].insert(pair.second);
m[pair.second].insert(pair.first);
}
for (int i = ; i < words1.size(); ++i) {
if (words1[i] == words2[i]) continue;
unordered_set<string> visited;
queue<string> q{{words1[i]}};
bool succ = false;
while (!q.empty()) {
auto t = q.front(); q.pop();
if (m[t].count(words2[i])) {
succ = true; break;
}
visited.insert(t);
for (auto a : m[t]) {
if (!visited.count(a)) q.push(a);
}
}
if (!succ) return false;
}
return true;
}
};

下面来看递归的写法,解题思路跟上面的完全一样,把主要操作都放到了一个递归函数中来写,参见代码如下:

解法二:

class Solution {
public:
bool areSentencesSimilarTwo(vector<string>& words1, vector<string>& words2, vector<pair<string, string>> pairs) {
if (words1.size() != words2.size()) return false;
unordered_map<string, unordered_set<string>> m;
for (auto pair : pairs) {
m[pair.first].insert(pair.second);
m[pair.second].insert(pair.first);
}
for (int i = ; i < words1.size(); ++i) {
unordered_set<string> visited;
if (!helper(m, words1[i], words2[i], visited)) return false;
}
return true;
}
bool helper(unordered_map<string, unordered_set<string>>& m, string& cur, string& target, unordered_set<string>& visited) {
if (cur == target) return true;
visited.insert(cur);
for (string word : m[cur]) {
if (!visited.count(word) && helper(m, word, target, visited)) return true;
}
return false;
}
};

下面这种解法就是碉堡了的联合查找 Union Find 了,这种解法的核心是一个 getRoot 函数,如果两个元素属于同一个群组的话,调用 getRoot 函数会返回相同的值。主要分为两部,第一步是建立群组关系,suppose 开始时每一个元素都是独立的个体,各自属于不同的群组。然后对于每一个给定的关系对,对两个单词分别调用 getRoot 函数,找到二者的祖先结点,如果从未建立过联系的话,那么二者的祖先结点时不同的,此时就要建立二者的关系。等所有的关系都建立好了以后,第二步就是验证两个任意的元素是否属于同一个群组,就只需要比较二者的祖先结点都否相同啦。是不是有点深度学习的赶脚,先建立模型 training,然后再 test。哈哈,博主乱扯的,二者并没有什么联系。这里保存群组关系的数据结构,有时用数组,有时用 HashMap,看输入的数据类型吧,如果输入元素的整型数的话,用 root 数组就可以了,如果是像本题这种的字符串的话,需要用 HashMap 来建立映射,建立每一个结点和其祖先结点的映射。注意这里的祖先结点不一定是最终祖先结点,而最终祖先结点的映射一定是最重祖先结点,所以 getRoot 函数的设计思路就是要找到最终祖先结点,那么就是当结点和其映射结点相同时返回,否则继续循环,可以递归写,也可以迭代写,这无所谓。注意这里第一行判空是相当于初始化,这个操作可以在外面写,就是要让初始时每个元素属于不同的群组,参见代码如下:

解法三:

class Solution {
public:
bool areSentencesSimilarTwo(vector<string>& words1, vector<string>& words2, vector<pair<string, string>> pairs) {
if (words1.size() != words2.size()) return false;
unordered_map<string, string> m;
for (auto pair : pairs) {
string x = getRoot(pair.first, m), y = getRoot(pair.second, m);
if (x != y) m[x] = y;
}
for (int i = ; i < words1.size(); ++i) {
if (getRoot(words1[i], m) != getRoot(words2[i], m)) return false;
}
return true;
}
string getRoot(string word, unordered_map<string, string>& m) {
if (!m.count(word)) m[word] = word;
return word == m[word] ? word : getRoot(m[word], m);
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/737

类似题目:

Friend Circles

Accounts Merge

Sentence Similarity

参考资料:

https://leetcode.com/problems/sentence-similarity-ii/

https://leetcode.com/problems/sentence-similarity-ii/discuss/109747/Java-Easy-DFS-solution-with-Explanation

https://leetcode.com/problems/sentence-similarity-ii/discuss/109752/JavaC%2B%2B-Clean-Code-with-Explanation

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Sentence Similarity II 句子相似度之二的更多相关文章

  1. [LeetCode] 737. Sentence Similarity II 句子相似度之二

    Given two sentences words1, words2 (each represented as an array of strings), and a list of similar ...

  2. [LeetCode] 737. Sentence Similarity II 句子相似度 II

    Given two sentences words1, words2 (each represented as an array of strings), and a list of similar ...

  3. [LeetCode] Sentence Similarity 句子相似度

    Given two sentences words1, words2 (each represented as an array of strings), and a list of similar ...

  4. LeetCode 737. Sentence Similarity II

    原题链接在这里:https://leetcode.com/problems/sentence-similarity-ii/ 题目: Given two sentences words1, words2 ...

  5. [LeetCode] Palindrome Permutation II 回文全排列之二

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...

  6. [LeetCode] Redundant Connection II 冗余的连接之二

    In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...

  7. [LeetCode] Arithmetic Slices II - Subsequence 算数切片之二 - 子序列

    A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...

  8. [LeetCode] Contains Duplicate II 包含重复值之二

    Given an array of integers and an integer k, return true if and only if there are two distinct indic ...

  9. [LeetCode] Single Number II 单独的数字之二

    Given an array of integers, every element appears three times except for one. Find that single one. ...

随机推荐

  1. Angular开发实践(六):服务端渲染

    Angular Universal Angular在服务端渲染方面提供一套前后端同构解决方案,它就是 Angular Universal(统一平台),一项在服务端运行 Angular 应用的技术. 标 ...

  2. python 函数 装饰器的使用方法

    一.装饰器  首先,我们要了解到什么是开放封闭式原则? 软件一旦上线后,对修改源代码是封闭的,对功能的扩张是开放的,所以我们应该遵循开放封闭的原则. 也就是说:我们必须找到一种解决方案,能够在不修改一 ...

  3. Beta No.3

    今天遇到的困难: 组员对github极度的不适应 github的版本控制和协同化编程确实操作起来需要一定的熟练度,我们缺乏这种熟练度 Android Studio版本不一致项目难以打开的问题仍然无法解 ...

  4. C语言博客作业—函数

    一.PTA实验作业 题目1:使用函数输出水仙花数 1. 本题PTA提交列表 2. 设计思路 (1)首先定义函数narcissistic(number)判断number是否为水仙花数: (2)narc用 ...

  5. C语言博客作业-结构体

    一.PTA实验作业 6-2 按等级统计学生成绩 1. 本题PTA提交列表 2. 设计思路 定义i,count存放不及格人数 for i=0 to n-1{ 判断 score的值的范围 if 100&g ...

  6. Java Collections API和泛型

    Java Collections API和泛型 数据结构和算法 学会一门编程语言,你可以写出一些可以工作的代码用计算机来解决一些问题,然而想要优雅而高效的解决问题,就要学习数据结构和算法了.当然对数据 ...

  7. memmove 和 memcpy的区别以及处理内存重叠问题

    区别: memcpy和memmove()都是C语言中的库函数,在头文件string.h中,作用是拷贝一定长度的内存的内容,原型分别如下: void *memcpy(void *dst, const v ...

  8. Flask 学习 八 用户角色

    角色在数据库中表示 app/models.py class Role(db.Model): __tablename__='roles' id = db.Column(db.Integer,primar ...

  9. 从数据恢复角度解析RAID6结构原理

    [什么是RAID]    RAID的概念描述在互联网上比比皆是,用最简单的原理描述,就是在定义存储方式时允许在一部分数据缺失的情况下不影响全部数据,类似于通讯领域的纠错码.不同的冗余模式形成了不同的R ...

  10. python实现维吉尼亚解密

    # -*-coding:UTF-8-*- from sys import stdout miwen = "KCCPKBGUFDPHQTYAVINRRTMVGRKDNBVFDETDGILTXR ...