[NOI 2009]变换序列
Description
对于 \(N\) 个整数 \(0, 1, \cdots, N-1\) ,一个变换序列 \(T\) 可以将 \(i\) 变成 \(T_i\) ,其中 \(T_i \in \{ 0,1,\cdots, N-1\}\) 且 \(\bigcup_{i=0}^{N-1} \{T_i\} = \{0,1,\cdots , N-1\}\) 。 \(\forall x,y \in \{0,1,\cdots , N-1\}\) ,定义 \(x\) 和 \(y\) 之间的距离 \(D(x,y)=min\{|x-y|,N-|x-y|\}\) 。给定每个 \(i\) 和 \(T_i\) 之间的距离 \(D(i,T_i)\) ,你需要求出一个满足要求的变换序列 \(T\) 。如果有多个满足条件的序列,输出其中字典序最小的一个。
Solution
显然对于 \(i\) ,能建的边为 \((i,(i-a)\mod~n)\) 和 \((i,(i+a)\mod~n)\) 。建完图跑最大匹配就好了,若所有数都能匹配,则有解。
对于求字典序最小,我们加边时可以考虑后加字典序小的边,这样就能先访问到;并且匹配时从大到小枚举左部点。
Code
//It is made by Awson on 2018.3.15
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 10000;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); }
int n, a, vis[N+5], match[N+5], ans[N+5];
struct tt {int to, next; }edge[(N<<2)+5];
int path[N+5], top;
void add(int u, int v) {edge[++top].to = v, edge[top].next = path[u], path[u] = top; }
bool dfs(int o, int color) {
for (int i = path[o]; i; i = edge[i].next)
if (vis[edge[i].to] != color) {
vis[edge[i].to] = color;
if (match[edge[i].to] == -1 || dfs(match[edge[i].to], color)) {
match[edge[i].to] = o; return true;
}
}
return false;
}
void work() {
read(n); memset(match, -1, sizeof(match));
for (int i = 0; i < n; i++) {
read(a);
if ((i-a+n)%n > (i+a)%n) add(i, (i-a+n)%n), add(i, (i+a)%n);
else add(i, (i+a)%n), add(i, (i-a+n)%n);
}
for (int i = n-1; i >= 0; i--)
if (!dfs(i, i+1)) {puts("No Answer\n"); return; }
for (int i = 0; i < n; i++) ans[match[i]] = i;
for (int i = 0; i < n-1; i++) write(ans[i]), putchar(' ');
writeln(ans[n-1]);
}
int main() {
work(); return 0;
}
[NOI 2009]变换序列的更多相关文章
- noi2009变换序列
noi2009变换序列 一.题目 1843 变换序列 2009年NOI全国竞赛 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题解 题目描述 ...
- 【bzoj1562】 NOI2009—变换序列
http://www.lydsy.com/JudgeOnline/problem.php?id=1562 (题目链接) 题意 给出一个序列(0~n-1),这个序列经过某个变换会成为另外一个序列,但是其 ...
- Bzoj 1562: [NOI2009]变换序列 匈牙利算法,二分图匹配
题目: http://cojs.tk/cogs/problem/problem.php?pid=409 409. [NOI2009]变换序列 ★★☆ 输入文件:transform.in 输出文 ...
- bzoj1562[NOI2009]变换序列——2016——3——12
任意门:http://www.lydsy.com/JudgeOnline/problem.php?id=1562 题目: 对于0,1,…,N-1的N个整数,给定一个距离序列D0,D1,…,DN-1,定 ...
- P1963 [NOI2009]变换序列
对于\(N\)个整数\(0, 1, \cdots, N-1,\)一个变换序列\(T\)可以将\(i\)变成\(T_i\),其中 \(T_i \in \{ 0,1,\cdots, N-1\}\)且 \( ...
- 【BZOJ1562】【NOI2009】变换序列(二分图匹配)
[BZOJ1562][NOI2009]变换序列 题面 BZOJ 洛谷 这题面写的是真的丑,还是先手动翻译成人话. 让你构造一个\(0..N-1\)的排列\(T\) 使得\(Dis(i,T_i)\)为给 ...
- BZOJ 1562 [NOI2009] 变换序列
[NOI2009] 变换序列 [题解] 就是有一个序列,每个位置可以填两个数,不可重复,问最小字典序. 显然,可以建一个二分图,判合法就是找完美匹配. 那怎么弄最小字典序呢?有好多种解法,我这里给出了 ...
- [Luogu 1963] NOI2009 变换序列
[Luogu 1963] NOI2009 变换序列 先%Dalao's Blog 什么?二分图匹配?这个确定可以建图? 「没有建不成图的图论题,只有你想不出的建模方法.」 建图相当玄学,不过理解大约也 ...
- 【二分图匹配】BZOJ1562-[NOI2009] 变换序列
[题目大意] 对于0,1,…,N-1的N个整数,给定一个距离序列D0,D1,…,DN-1,定义一个变换序列T0,T1,…,TN-1使得每个i,Ti的环上距离等于Di.一个合法的变换序列应是0,1,…, ...
随机推荐
- 在Winform混合式框架中整合外部API接口的调用
在我们常规的业务处理中,一般内部处理的接口多数都是以数据库相关的,基于混合式开发的Winform开发框架,虽然在客户端调用的时候,一般选择也是基于Web API的调用,不过后端我们可能不仅仅是针对我们 ...
- web.config中configSections section节 -Z
由于最近一个项目的数据库变动比较频繁, 为了减少数据层的负担, 打算采用.net的MVC框架, 使用LINQ对付数据层. 这个框架的web.config文件里出现了configSectio ...
- 201621123031 《Java程序设计》第6周学习总结
作业06-接口.内部类 1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图或相关笔记,对面向对象思想进行一个总结. 注1:关键词与内容不求多 ...
- SDVN
Software Defined Vehicular Networks VANET 车载自组网(VANET)是指在交通环境中车辆之间.车辆与固定接入点之间及车辆与行人之间相互通信组成的开放式移动Ad ...
- 使用SecureCRTP 连接生产环境的web服务器和数据库服务器
一.使用SecureCRTP 连接生产环境的web服务器 首先,需要知道以下参数信息: 1.web服务器的ip地址 2.服务器的端口号 3.会话连接的用户名和密码 4.服务器的用户名 ...
- 【iOS】swift 枚举
枚举语法 你可以用enum开始并且用大括号包含整个定义体来定义一个枚举: enum SomeEnumeration { // 在这里定义枚举 } 这里有一个例子,定义了一个包含四个方向的罗盘: enu ...
- OO第一次总结
第一次作业: 第一次作业的指导书发下来之后我按着上面的步骤一步一步的做了之后发现项目拉下来了,怎么开始码代码呢...然后在舍友的帮助下才知道怎么建包建类,然后对Java的语法又不是很了解,于是就先把C ...
- php的控制器链
控制器之间协同工作就形成了控制器链· 比如在一个控制器的方法中,创建另外一个·控制器,创建对象,然后调用第二个控制器方法,那么在第一个控制器分配给视图的变量,在 第二个控制器的方法中对应的视图也是可以 ...
- Linux CentOS7.0 (01)在Vmvare Workstation上 安装配置
一.新建虚拟机 1.创建新的虚拟机 -> 默认典型 ->选择安装介质 2.指定虚拟机名称.安装目录.磁盘容量大小 点击 "完成",创建虚拟机! 随后虚拟机将自动启动安装 ...
- Spring Security 入门(3-10)Spring Security 的四种使用方式
原文链接: http://www.360doc.com/content/14/0724/17/18637323_396779659.shtml 下面是作者的一个问题处理