Perceptron Learning Algorithm
感知器算法,
本质是二元线性分类算法,即用一条线/一个面/一个超平面将1,2维/3维/4维及以上数据集根据标签的不同一分为二。
算法确定后,根据W取值的不同形成不同的h,构成假设集合H。
如2维感知器算法,根据w0,w1,w2的不同取值,构成了不同的h,这些h最终构成H。注意为了方便表示,将阈值的相反数记为w0,对应的数据点增加一维x0,恒为1。
而算法就是根据给定数据集D从H中选出与目标模式f最为相似的g。
更新规则/学习过程,
遍历数据集合,若遇到异常点,即由当前W更新为新的W,
若异常点的y值为+1,表明X与当前W的内积值为负,角度过大,更新后角度将会变小;若异常点的y值为-1,表明X与当前W的内积值为正,角度过小,更新后角度将会变大。
更新W的本质其实是从H中选出与f更为相似的h的过程。
注意,更新后不能保证异常点变为正常点,只是异常的程度小了点。
何时停止更新?
在当前W的情况下,遍历D中所有数据点,无异常点时停止更新。
一定能够保证能停止更新吗?即在当前W下无法找到一个新的W使得对应的h与f更为接近?
只要数据线性可分就能!
Wf与Wt的内积值随着更新次数的上升而增大,同时,Wt的模也在增大,
不过,内积增大的程度大于模增大的程度,保证了随着更新次数的上升,Wt与Wf越来越接近。
PLA的优缺点:
优点:简单、快速、任意维度;
缺点:假设数据线性可分,然而我们并不知道f,也就不知道是否可分,再来,要是知道线性可分,W也已经知道了,没有必要再用PLA了;
经过多少次更新才能收敛也不知道,如上证明,T与Wf有关,然而我们不知道Wf
Pocket Algorithm
若数据线性不可分,使用PA,
即既然异常点无法避免,PA在H中找到一个使得异常点数目最小的h作为g。
注:O(nk)为多项式型时间复杂度,O(kn)/O(n!)/O(>n!)/...为指数型时间复杂度。
问题分为可解问题和不可解问题,多项式型时间复杂度的可解问题为P问题,验证时为多项式型时间复杂度的为NP问题,能否可解未知。
P问题肯定是NP问题,NP问题不一定是P问题。
PA,初始化W,放到口袋里,若遇到异常点,使用PLA的更新规则得到新的W,遍历数据集,若是新的W下异常点的数目更少,则用新的W替换旧的W放到口袋中,否则不替换。继续遍历数据集,得到下一个异常点,重复上述过程至足够迭代次数。口袋里放的永远是目前使得异常点最少的W。
PA不影响PLA的正常运行,只是从历史W中挑出使得样本内分类错误最少的W作为最终返回值。
如果数据集是线性可分的,PLA和PA都能够实现D内无异常点的分类,
但是PA的时间会长于PLA,因为多了比较两个不同的W下遍历一轮数据所得异常点数目多少的过程。
 

机器学习基石:02 Learning to Answer Yes/No的更多相关文章

  1. 机器学习基石 2 Learning to Answer Yes/No

    机器学习基石 2 Learning to Answer Yes/No Perceptron Hypothesis Set 对于一个线性可分的二分类问题,我们可以采用感知器 (Perceptron)这种 ...

  2. 机器学习基石笔记:02 Learning to Answer Yes/No、PLA、PA

    原文地址:https://www.jianshu.com/p/ed0aee74523f 一.Perceptron Learning Algorithm (一)算法原理 PLA本质是二元线性分类算法,即 ...

  3. 02 Learning to Answer Yes/No

    Perceptron Learning Algorithm 感知器算法, 本质是二元线性分类算法,即用一条线/一个面/一个超平面将1,2维/3维/4维及以上数据集根据标签的不同一分为二. 算法确定后, ...

  4. 机器学习基石 4 Feasibility of Learning

    机器学习基石 4 Feasibility of Learning Learning is Impossible? 机器学习:通过现有的训练集 \(D\) 学习,得到预测函数 \(h(x)\) 使得它接 ...

  5. 机器学习基石 3 Types of Learning

    机器学习基石 3 Types of Learning Learning with Different Output Space Learning with Different Data Label L ...

  6. 机器学习基石 1 The Learning Problem

    机器学习基石 1 The Learning Problem Introduction 什么是机器学习 机器学习是计算机通过数据和计算获得一定技巧的过程. 为什么需要机器学习 1 人无法获取数据或者数据 ...

  7. 機器學習基石(Machine Learning Foundations) 机器学习基石 课后习题链接汇总

    大家好,我是Mac Jiang,非常高兴您能在百忙之中阅读我的博客!这个专题我主要讲的是Coursera-台湾大学-機器學習基石(Machine Learning Foundations)的课后习题解 ...

  8. 机器学习基石(台湾大学 林轩田),Lecture 1: The Learning Problem

    课程的讲授从logo出发,logo由四个图案拼接而成,两个大的和两个小的.比较小的两个下一次课程就可能会解释到它们的意思,两个大的可能到课程后期才会解释到它们的意思(提示:红色代表使用机器学习危险,蓝 ...

  9. 机器学习基石第三讲:types of learning

    博客已经迁移至Marcovaldo's blog (http://marcovaldong.github.io/) 刚刚完毕机器学习基石的第三讲.这一讲主要介绍了机器学习的分类.对何种问题应该使用何种 ...

随机推荐

  1. JAVA-基础语法篇

    JAVA-基础语法篇 一.     基础语法: 对大小写敏感 类名的首字母大写 方法名首字母小写,后面用驼峰发命名 源文件名和类名要相同 主方法入口: public static void main( ...

  2. Alpha冲刺Day12

    Alpha冲刺Day12 一:站立式会议 今日安排: 由黄腾飞和张梨贤继续完成政府人员模块下的风险管控子模块下的分级统计展示 由林静继续完成企业注册模块 由周静平完成登录页面模块 二:实际项目进展 人 ...

  3. 20162321王彪-实验二-Java面向对象程序设计

    实验二Java面向对象程序设计 实验内容一 初步掌握单元测试和TDD 什么是单元测试:单元测试时开发者编写的一小段代码,用于检测被测代码的一个很小的,很明确的功能是否正确.执行单元测试,是为了证明某段 ...

  4. NumPy简介

    NumPy是什么? NumPy(Numerrical Python 的缩写)是一个开源的Python科学计算库.使用NumPy,就可以很自然的使用数组.NumPy包含很多实用的数学函数,涵盖线性代数运 ...

  5. iOS 简易无限滚动的图片轮播器-SDCycleScrollView

    @interface ViewController () <</span>SDCycleScrollViewDelegate> @end @implementation Vie ...

  6. xcode修改代码目录结构出现clang:error:nosuchfileordirectory解决方法

    需要迁移一个开源工程的一部分内容到自己工程,迁移对方的工程到自己工程之后,因目录结构配置整理需要,对嵌入的工程目录进行了结构改变,编译后出现: clang: error: no such file o ...

  7. Struts2之配置

    Struts2的默认配置文件是struts.xml放在/web-inf/classes目录下,struts配置文件的最大作用就是配置Action与请求之间的对应关系,并配置逻辑视图名和物理视图名之间的 ...

  8. 十、Python练习----基础搭建飞机大战

    只是简单的学习了pygame,实现飞机的摧毁还需要多张图片的切换,和sprite(碰撞精灵),还有多种音效的添加(如背景音乐.摧毁特效).以后再深入学习我只是练习一下python. 一.搭建界面(基于 ...

  9. 0基础菜鸟学前端之Vue.js

    简介:0基础前端菜鸟,啃了将近半月前端VUE框架,对前端知识有了初步的了解.下面总结一下这段时间的学习心得. 文章结构 前端基础 Vue.js简介 Vue.js常用指令 Vue.js组件 Vue.js ...

  10. mint-ui在vue中的使用。

    首先放上mint-ui中文文档 近来在使用mint-ui,发现部分插件在讲解上并不是很详细,部分实例找不到使用的代码.github上面的分享,里面都是markdown文件,内容就是网上的文档 刚好自己 ...