p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee }
span.s1 { }
span.s2 { text-decoration: underline }

Is object localization for free? –Weakly-supervised learning with convolutional neural networks. Maxime Oquab, Leon Bottou, Ivan Laptev, Josef Sivic

http://www.di.ens.fr/~josef/publications/Oquab15.pdf

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px "Helvetica Neue"; color: #323333 }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
li.li2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
span.s1 { }
span.s2 { background-color: #fefa00 }
ul.ul1 { list-style-type: disc }
ul.ul2 { list-style-type: circle }

亮点

  • 一个好名字给了让读者开始阅读的理由
  • global max pooling over sliding window的定位方法值得借鉴

方法

本文的目标是:设计一个弱监督分类网络,注意本文的目标主要是提升分类。因为是2015年的文章,方法比较简单原始。

Following three modifications to a classification network.

  • Treat the fully connected layers as convolutions, which allows us to deal with nearly arbitrary-sized images as input.
    • The aim is to apply the network to bigger images in a sliding window manner thus extending its output to n×m× K, where n and m denote the number of sliding window positions in the x- and y- direction in the image, respectively.
    • 3xhxw —> convs —> kxmxn (k: number of classes)
  • Explicitly search for the highest scoring object position in the image by adding a single global max-pooling layer at the output.
    • kxmxn —> kx1x1
    • The max-pooling operation hypothesizes the location of the object in the image at the position with the maximum score
  • Use a cost function that can explicitly model multiple objects present in the image.

因为图中可能有很多物体,所以多类的分类loss不适用。作者把这个任务视为多个二分类问题,loss function和分类的分数如下

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333; min-height: 15.0px }
p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px "Helvetica Neue"; color: #323333 }
li.li1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
span.s1 { }
ul.ul1 { list-style-type: disc }

training

muti-scale test

实验

classification

  • mAP on VOC 2012 test: +3.1% compared with [56]
  • mAP on VOC 2012 test: +7.6% compared with kx1x1 output and single scale training
  • mAP on VOC: +2.6% compared with RCNN
  • mAP on COCO 62.8%

Localisation

  • Metric: if the maximal response across scales falls within the ground truth bounding box of an object of the same class within 18 pixels tolerance, we label the predicted location as correct. If not, then we count the response as a false positive (it hit the background), and we also increment the false negative count (no object was found).
  • metric on VOC 2012 val: -0.3% compared with RCNN
  • mAP on COCO 41.2%

缺点

  • 定位评测的metric不具有权威性
  • max pooling改为average pooling会不会对于多个instance的情况更好一些

[CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记的更多相关文章

  1. Coursera, Deep Learning 4, Convolutional Neural Networks, week3, Object detection

    学习目标 Understand the challenges of Object Localization, Object Detection and Landmark Finding Underst ...

  2. 论文笔记之:Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking

    Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking  arXiv Paper ...

  3. tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)

    今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real- ...

  4. [CVPR2017] Weakly Supervised Cascaded Convolutional Networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #042eee } p. ...

  5. A brief introduction to weakly supervised learning(简要介绍弱监督学习)

    by 南大周志华 摘要 监督学习技术通过学习大量训练数据来构建预测模型,其中每个训练样本都有其对应的真值输出.尽管现有的技术已经取得了巨大的成功,但值得注意的是,由于数据标注过程的高成本,很多任务很难 ...

  6. [CVPR 2016] Weakly Supervised Deep Detection Networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  7. 课程四(Convolutional Neural Networks),第三 周(Object detection) —— 0.Learning Goals

    Learning Goals: Understand the challenges of Object Localization, Object Detection and Landmark Find ...

  8. [C4W3] Convolutional Neural Networks - Object detection

    第三周 目标检测(Object detection) 目标定位(Object localization) 大家好,欢迎回来,这一周我们学习的主要内容是对象检测,它是计算机视觉领域中一个新兴的应用方向, ...

  9. 论文笔记(7):Constrained Convolutional Neural Networks for Weakly Supervised Segmentation

    UC Berkeley的Deepak Pathak 使用了一个具有图像级别标记的训练数据来做弱监督学习.训练数据中只给出图像中包含某种物体,但是没有其位置信息和所包含的像素信息.该文章的方法将imag ...

随机推荐

  1. Android高效率编码-第三方SDK详解系列(三)——JPush推送牵扯出来的江湖恩怨,XMPP实现推送,自定义客户端推送

    Android高效率编码-第三方SDK详解系列(三)--JPush推送牵扯出来的江湖恩怨,XMPP实现推送,自定义客户端推送 很久没有更新第三方SDK这个系列了,所以更新一下这几天工作中使用到的推送, ...

  2. (二十一)即时通信的聊天气泡的实现II

    一些优化: 禁止TableView的点击: self.tableView.allowsSelection = NO; 合并相同的时间: 不需要显示的时间,只要不设置尺寸就行了. 一个if判断的技巧,为 ...

  3. hive语句嵌入python脚本(进行map和reduce,实现左外连接)

    在Hive语句中使用脚本(如python和shell)进行map和reduce:利用命令transform(或者指定map和reduce),配合加入的脚本文件add file 请看:http://ww ...

  4. android Gradle的几个基本概念

    什么是Gradle? Gradle是一种依赖管理工具,基于Groovy语言,面向Java应用为主,它抛弃了基于XML的各种繁琐配置,取而代之的是一种基于Groovy的内部领域特定(DSL)语言. Gr ...

  5. C++多重继承与虚拟继承

    本文只是粗浅讨论一下C++中的多重继承和虚拟继承. 多重继承中的构造函数和析构函数调用次序 我们先来看一下简单的例子: #include <iostream> using namespac ...

  6. 基于ARM-contexA9按键驱动开发

    之前我们写过LED和蜂鸣器的驱动,其实那两个都是一个模版的,因为都是将IO口配置成输出模式,然后用高低电平来驱动这些设备.其实linux设备驱动,说白了跟单片机开发的方式是差不多的,只不过内核的开发基 ...

  7. Zip操作的工具类

     /** * Copyright 2002-2010 the original author is huanghe. */package com.ucap.web.cm.webapp.util; ...

  8. HBase Master 启动

    –>首先初始化HMaster –>创建一个rpcServer,其中并启动 –>启动一个Listener线程,功能是监听client的请求,将请求放入nio请求队列,逻辑如下: –&g ...

  9. mysql 无法插入中文

    MySQL数据库默认编码已经是utf8了, default-character-set = utf8,可是向数据库中表中插入中文时,却老是出现 ....\xB5\xA5\xD1\xA1 for col ...

  10. 面试之路(3)-详解MVC,MVP,MVVM

    一:mvc mvc结构: 视图(View):用户界面. 控制器(Controller):业务逻辑 模型(Model):数据保存 mvc各部分的通信方式 mvc互动模式 通过 View 接受指令,传递给 ...