MT【329】二次函数系数的最大最小
已知二次函数$f(x)=ax^2+bx+c$有零点,且$a+b+c=1$ 若$t=\min\{a,b,c\}$求$t$的最大值.
分析:由$a,c$的对称性,不妨$c\ge a$即$2a+b\le1$则$t=\min\{a,b\}$.
由$b^2\ge4ac$得$(2a+b)^2\ge4a $,由于求$t$的最大值,只需考虑$a,b>0$(不然则$t=\min\{a,b\}\le0$)
此时由$(2a+b)^2\ge4a $得$1\ge4t$故$t\le\dfrac{1}{4},$当$a=\dfrac{1}{4},b=\dfrac{1}{2},c=\dfrac{1}{4}$时取到最值.
另外证明:不妨$a,b,c>0$注意到$\dfrac{a+b+c}{4}\ge\sqrt[4]{a(\frac{b}{2})^2c}\ge \sqrt[4]{a^2c^2}\ge\min\{a,b,c\}$
故$t\le1$
练习:
已知二次函数$f(x)=ax^2+bx+c$有零点,且$a+b+c=1$ 若$t=\max\{a,b,c\}$求$t$的最小值.
答案:$\dfrac{4}{9}$
MT【329】二次函数系数的最大最小的更多相关文章
- POJ 1061青蛙的约会。求解(x+mT)%L=(y+nT)%L的最小步数T。
因为是同余,所以就是(x+mT)%L-(y+nT)%L=0.可以写成(x-y+(m-n)T)%L=0.就是这个数是L的倍数啦.那么我可以这样x-y+(m-n)T + Ls = 0.就可以了,s可正可负 ...
- 第一章 MIZ701 VIVADO 搭建SOC最小系统HelloWorld
本章内容是MIZ701中的第五章,本来也是要过渡一下FPGA部分的,但是由于MIZ701没有单独提供PL部分的晶振时钟,时钟必须通过PS产生,所以本章内容作为Miz701的第一章内容.本章的目的是 ...
- [C2W3] Improving Deep Neural Networks : Hyperparameter tuning, Batch Normalization and Programming Frameworks
第三周:Hyperparameter tuning, Batch Normalization and Programming Frameworks 调试处理(Tuning process) 目前为止, ...
- WPF 让子元素动起来!
在没有接触Blend之前,自己整出了一个MultiTouchHelper,这东西是做什么的呢?就是利用附加属性让元素可以多点触控. 然后某一天发现Blend里面有一个Behavior的东西,我去,原来 ...
- 一步一步理解GB、GBDT、xgboost
GBDT和xgboost在竞赛和工业界使用都非常频繁,能有效的应用到分类.回归.排序问题,虽然使用起来不难,但是要能完整的理解还是有一点麻烦的.本文尝试一步一步梳理GB.GBDT.xgboost,它们 ...
- Gradient Descent 梯度下降法-R实现
梯度下降法: [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 应用:求线性回归方程的系数 目标:最小化损失 ...
- ZJOI2019一轮停课刷题记录
Preface 菜鸡HL终于狗来了他的省选停课,这次的时间很长,暂定停到一试结束,不过有机会二试的话还是可以搞到4月了 这段时间的学习就变得量大而且杂了,一般以刷薄弱的知识点和补一些新的奇怪技巧为主. ...
- matlab 小波工具箱
wavemenu --- >wavelet ---->wavelet packet1-D Matlab小波工具箱的使用1 转载▼ http://blog.sina.com.cn/s/blo ...
- spark内存分配
问题描述 在测试spark on yarn时,发现一些内存分配上的问题,具体如下. 在$SPARK_HOME/conf/spark-env.sh中配置如下参数: SPARK_EXECUTOR_INST ...
随机推荐
- 关于单链表的增删改查方法的递归实现(JAVA语言实现)
因为在学习数据结构,准备把java的集合框架底层源码,好好的过一遍,所以先按照自己的想法把单链表的类给写出来了; 写该类的目的: 1.练习递归 2.为深入理解java集合框架底层源码打好基础 学习的视 ...
- javaweb中上传视频,并且播放,用上传视频信息为例
1.上传视频信息的jsp页面uploadVideo.jsp <body background="image/bk_hero.jpg"><div id=" ...
- 编程心法 之 Scrum - Agile 敏捷开发
Scrum是一种敏捷开发的方法 先定一个能达到的小目标 Scrum 团队 包括产品负责人.开发团队和Scrum Master Product Owner 产品负责人:管理代办事项和优先级的唯一负责人. ...
- Python数据描述与分析
在进行数据分析之前,我们需要做的事情是对数据有初步的了解,比如对数据本身的敏感程度,通俗来说就是对数据的分布有大概的理解,此时我们需要工具进行数据的描述,观测数据的形状等:而后才是对数据进行建模分析, ...
- ext当表单中的输入项为必填时,输入项label后显示红色的*
form表单里,当输入项为必填项时,需要将对应item的allowblank属性设置为true,如果item的label后面自带红色的*,表单中哪些输入项是“必填”,哪些输入项是“非必填”,一眼望去清 ...
- activemq读取剩余消息队列中消息的数量
先上原文链接: http://blog.csdn.net/bodybo/article/details/5647968 ActiveMQ在C#中的应用 ActiveMQ是个好东东,不必多说.Acti ...
- Redis中5种数据结构的使用场景
一.redis 数据结构使用场景 原来看过 redisbook 这本书,对 redis 的基本功能都已经熟悉了,从上周开始看 redis 的源码.目前目标是吃透 redis 的数据结构.我们都知道,在 ...
- Webdriver之API详解(2)
前言:今天继续上一篇文章https://www.cnblogs.com/linuxchao/p/linuxchao-selenium-apione.html分享selenium' webdriver ...
- Java基础系列--08_集合1
---恢复内容开始--- 集合当中有很多都是应用到泛型的技术,所以在讲集合之前,应该先将泛型的概念普及一下. 泛型: (1)泛型是一种类型,但是这种类型是在编译或者调用方法时才确定. (2 ...
- ThreadLocal<T>学习总结
public class ThreadLocalTest { /** * @param * @Author: xdj * @Date: 2019/4/12 10:16 * @Description: ...