51Nod 1196 字符串的数量
用N个不同的字符(编号1 - N),组成一个字符串,有如下要求:
(1) 对于编号为i的字符,如果2 * i > n,则该字符可以作为结尾字符。如果不作为结尾字符而是中间的字符,则该字符后面可以接任意字符。
(2) 对于编号为i的字符,如果2 * i <= n,则该字符不可以作为结尾字符。作为中间字符,那么后面接的字符编号一定要 >= 2 * i。
问有多少长度为M且符合条件的字符串,由于数据很大,只需要输出该数Mod 10^9 + 7的结果。
例如:N = 2,M = 3。则abb, bab, bbb是符合条件的字符串,剩下的均为不符合条件的字符串。
解题报告:
用时:1h30min,1WA
这题参考了题解定义的状态,\(f[i]\)表示长度为i的合法字符串方案数,\(g[i]\)表示长度为i的字符链的方案数,字符链表示以\(2*i>n\)的字符为结尾的字符串,其中\(2*i>n\)的字符有且仅有一个,这样可以保证不重复计算,容易发现转移:
\(f[i]=\sum_{j=1}^{n}f[i-j]*g[j]\)
我们会发现\(g[j]\)最多长度为\(logn\),所以可以直接暴力转移,复杂度\(O(nlogn)\)
以下是乱搞:
但是对于\(g[i]\)我们也需要预处理出:
定义\(p[i][j]\)为长度为\(i\)的以j结尾的字符的方案数,显然:
\(p[i][j]=\sum_{k=1}^{j/2}p[i-1][k]\)
这里我们可以记前缀和优化,递推依然是\(O(nlogn)\)
\(g[i]=\sum_{j=1}^{n/2}p[i][j]\)
均摊复杂度\(O(nlogn)\)
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int mod=1e9+7,N=1e6+5;
int n,m,maxlen,p[22][N],sum[N];ll g[N],f[N];
void work()
{
scanf("%d%d",&n,&m);
maxlen=log(m)/log(2)+2;
sum[0]=1;
for(int i=1;i<=maxlen;i++){
if(i!=1)sum[0]=0;
for(int j=1;j<=n;j++){
sum[j]=sum[j-1]+p[i-1][j];
if(sum[j]>=mod)sum[j]-=mod;
}
for(int j=1;j<=n;j++){
p[i][j]+=sum[j/2];
if(p[i][j]>=mod)p[i][j]-=mod;
}
}
for(int i=1;i<=maxlen;i++){
for(int j=n/2+1;j<=n;j++)
{
g[i]+=p[i][j];
if(g[i]>=mod)g[i]-=mod;
}
}
f[0]=1;
for(int i=1;i<=m;i++){
for(int j=1;j<=maxlen && j<=i;j++)
f[i]+=g[j]*f[i-j],f[i]%=mod;
}
printf("%lld\n",f[m]);
}
int main()
{
work();
return 0;
}
51Nod 1196 字符串的数量的更多相关文章
- 51nod 1196 字符串的数量(DP+数论?)
这题好像是神题...V1 V2 V3分别涵盖了51nod 5级算法题 6级算法题 难题 讨论区的曹鹏神牛好强啊...一种做法切了V1 V2 V3,而且做法是一步一步优化的 还没去看优化的部分,未优化已 ...
- 51nod 1197 字符串的数量 V2(矩阵快速幂+数论?)
接上一篇,那个递推式显然可以用矩阵快速幂优化...自己随便YY了下就出来了,学了一下怎么用LaTeX画公式,LaTeX真是个好东西!嘿嘿嘿 如上图.(刚画错了一发...已更新 然后就可以过V2了 or ...
- @51nod - 1196/1197/1198@ 字符串的数量
目录 @description@ @solution@ @part - 1@ @part - 2@ @part - 3@ @accepted code@ @details@ @description@ ...
- 51nod1196 字符串的数量
用N个不同的字符(编号1 - N),组成一个字符串,有如下要求:(1) 对于编号为i的字符,如果2 * i > n,则该字符可以作为结尾字符.如果不作为结尾字符而是中间的字符,则该字符后面可以接 ...
- [51nod1197]字符串的数量 V2
用N个不同的字符(编号1 - N),组成一个字符串,有如下要求: (1) 对于编号为i的字符,如果2 * i > n,则该字符可以作为结尾字符.如果不作为结尾字符而是中间的字符,则该字符后面可以 ...
- 51nod 1277 字符串中的最大值
题目链接 51nod 1277 字符串中的最大值 题解 对于单串,考虑多串的fail树,发现next数组的关系形成树形结构 建出next树,对于每一个前缀,他出现的次数就是他子树的大小 代码 #inc ...
- 用map来统计数组中各个字符串的数量
1.背景 想要统计这一个字符串数组中每一个非重复字符串的数量,使用map来保存其key和value.这个需求在实际开发中经常使用到,我以前总是新建一个空数组来记录不重复字符串,并使用计数器计数,效率低 ...
- 51nod【1196】字符串的数量
超级神题! 有n种字符,若此种字符的编号( \(1\) ~ \(n\)),\(i*2>n\),则他后面可接任意字符.若不是,则他后面接的字符编号至少要是他的两倍. 问长度为m的字符串的个数. 这 ...
- 51Nod 1277 字符串中的最大值(KMP,裸题)
1277 字符串中的最大值 题目来源: Codility 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 一个字符串的前缀是指包含该字符第一个字母的连续子串,例如: ...
随机推荐
- 2017-2018-1 我爱学Java 第三周 作业
Team Presentation 团队展示 队员学号 队名 团队项目描述 队员风采 团队首次合照 团队的特色描述 团队初步合作 前两周合作过程中的优缺点 如何改进 团队选题 确立,建立和初步熟悉团队 ...
- Python内置函数(62)——exec
英文文档: exec(object[, globals[, locals]]) This function supports dynamic execution of Python code. obj ...
- restful架构风格设计准则(二)以资源为中心,一个url
读书笔记,原文链接:http://www.cnblogs.com/loveis715/p/4669091.html,感谢作者! 1.REST是一种架构风格,其核心是面向资源,简化设计,降低开发的复杂性 ...
- 新概念英语(1-13)A new dress
What colour is Anna's hat? A:What colour is your new dress? B:It's green.Come upstairs and see it. A ...
- leetcode算法: Find the Difference
Given two strings s and t which consist of only lowercase letters.String t is generated by random sh ...
- CWMP开源代码研究——stun的NAT穿透
原创作品,转载请注明出处,严禁非法转载.如有错误,请留言! email:40879506@qq.com 参考: http://www.cnblogs.com/myblesh/p/6259765.htm ...
- hdu-3348 coins---贪心
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3348 题目大意: 给你一个价格,还有面值分别为1,5,10,50,100(单位:毛)纸币的数量,要你 ...
- SQL server2017的操作(练习题)
题目: 假设有教材管理数据库BM,包括3个基本表: 教材(书号,书名,作者,出版社) B(Bno, Bname, Author, pub) 班级(班号,专业,所在系,人数) C(Cno, Spe, D ...
- linux查看日志文件内容命令tail、cat、tac、head、echo
linux查看日志文件内容命令tail.cat.tac.head.echo tail -f test.log你会看到屏幕不断有内容被打印出来. 这时候中断第一个进程Ctrl-C, ---------- ...
- enumerate给列表加索引
>>> list = ['a','b','c'] >>> for i,j in enumerate(list): print(i,j) 0 a 1 b 2 c &g ...