洛谷P2480 [SDOI2010]古代猪文
要求
(图是盗来的QAQ)
首先用欧拉定理把幂模一下,直接就是MOD-1了
然后发现MOD-1可以分解为2,3,4679,35617,都是质数,可以直接用Lucas定理
然后用中国剩余定理合并一下即可
千万不可把MOD和MOD-1搞混了,否则调试好麻烦的
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<vector>
#include<cmath>
#define MAXN 35617+10
#define ll long long
#define pb push_back
#define ft first
#define sc second
#define mp make_pair
using namespace std;
ll c[],m[]={,,,,};
ll MOD=;
ll N,G;
ll inv[MAXN],finv[MAXN],fac[MAXN];
ll Pow(ll a,ll b,ll p){
ll ret=1LL;
while(b){
if(b&){
(ret*=a)%=p;
}
(a*=a)%=p;
b>>=;
}
return ret;
}
ll Inv(ll x,ll p){
return Pow(x,p-,p);
}
ll C(ll n,ll m,ll p){
if(n<m)return 0LL;
return fac[n]*finv[m]*finv[n-m]%p;
}
ll Lucas(ll n,ll m,ll p){
if(!m)return 1LL;
if(n>=p||m>=p){
ll nn=n%p,mm=m%p;
if(nn<mm)return 0LL;
return Lucas(n/p,m/p,p)*C(nn,mm,p)%p;
}
else{
return C(n,m,p);
}
}
ll solve(ll p){
fac[]=fac[]=;
finv[]=finv[]=;
inv[]=;
for(int i=;i<p;i++){
fac[i]=fac[i-]*i%p;
inv[i]=p-(inv[p%i]*(p/i)%p);
finv[i]=finv[i-]*inv[i]%p;
}
ll t=sqrt(1.0*N);
ll ret=0LL;
for(ll i=;i<=t;i++){
if(N%i==){
ret+=Lucas(N,i,p);
if(N/i!=i){
ret+=Lucas(N,N/i,p);
}
}
}
return ret;
}
ll CRT(){
ll M=MOD-;
ll ret=0LL;
for(int i=;i<=;i++){
ll t=Inv(M/m[i],m[i])%M*(M/m[i])%M;
ret+=t*c[i]%M;
ret%=M;
}
return ret;
}
int main()
{
scanf("%lld%lld",&N,&G);
if(G%MOD==){
printf("0\n");
return ;
}
for(int i=;i<=;i++) c[i]=solve(m[i]);
ll x=CRT();
ll ans=Pow(G,x,MOD);
printf("%lld\n",ans);
}
洛谷P2480 [SDOI2010]古代猪文的更多相关文章
- 洛谷 P2480 [SDOI2010]古代猪文 解题报告
P2480 [SDOI2010]古代猪文 题目背景 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" ...
- 洛谷 P2480 [SDOI2010]古代猪文 题解【欧拉定理】【CRT】【Lucas定理】
数论综合题. 题目背景 题目背景与题目无关因此省略.题目链接 题目描述 猪王国的文明源远流长,博大精深. iPig 在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为 \(N\).当然,一种语 ...
- 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)
洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...
- 洛谷P2480 [SDOI2010]古代猪文(卢卡斯定理+中国剩余定理)
传送门 好吧我数学差的好像不是一点半点…… 题目求的是$G^{\sum_{d|n}C^d_n}mod\ 999911659$ 我们可以利用费马小定理$a^{k}\equiv a^{k\ mod\ (p ...
- 洛咕 P2480 [SDOI2010]古代猪文
洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658} ...
- 【洛谷P2480】古代猪文
题目大意:求 \[ G^{\sum\limits_{d|N}\binom{n}{k}} mod\ \ 999911659 \] 题解:卢卡斯定理+中国剩余定理 利用卢卡斯定理求出指数和式对各个素模数的 ...
- 【题解】P2480 [SDOI2010]古代猪文 - 卢卡斯定理 - 中国剩余定理
P2480 [SDOI2010]古代猪文 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 猪王国的文明源远流长,博大精 ...
- P2480 [SDOI2010]古代猪文
P2480 [SDOI2010]古代猪文 比较综合的一题 前置:Lucas 定理,crt 求的是: \[g^x\bmod 999911659,\text{其中}x=\sum_{d\mid n}\tbi ...
- P2480 [SDOI2010]古代猪文 Lucas+CRT合并
\(\color{#0066ff}{ 题目描述 }\) 猪王国的文明源远流长,博大精深. iPig在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为N.当然,一种语言如果字数很多,字典也相应会 ...
随机推荐
- C语言第五次博客作业
一.PTA实验作业 题目1:6-6 使用函数输出水仙花数 1. 本题PTA提交列表 2. 设计思路 (1) 首先先定义narcissistic函数. (2)定义四个整形变量n,a,d,cnt,sum, ...
- APP案例分析--扇贝单词
APP案例分析 一.调研 1.第一次上手 第一次使用时,一进APP,有一个每日一句,然后就是登录界面.有点不舒服,我都还不知道你这个APP好不好用,不让我体验一下就要注册.简单的测试了我的英语水平 ...
- webView调用系统地图,电话,和跳转链接的方法
webView.dataDetectorTypes = UIDataDetectorTypePhoneNumber | UIDataDetectorTypeLink | UIDataDetectorT ...
- java 二维码解析和生成
package ykxw.web.qrcode.utils; import java.awt.Color; import java.awt.Graphics2D; import java.awt.im ...
- 《高级软件测试》11.16.Jira使用说明的撰写和操作视频的录制
今日任务完成情况如下: 小王:完成了测试管理工具jira的使用手册中,基本情况介绍.下载安装部分的撰写工作:小高:参考官方手册,结合自己的实际使用体会,对jira的基本组成及其工作流程进行了介绍:小陈 ...
- bzoj千题计划243:bzoj2325: [ZJOI2011]道馆之战
http://www.lydsy.com/JudgeOnline/problem.php?id=2325 设线段树节点区间为[l,r] 每个节点维护sum[0/1][0/1] 从l的A/B区域到r的 ...
- Scala 集合入门
1. 数组 1.1 定长数组 scala.Array 是定长的可变的索引型集合, JVM 中, Scala 的 Array 是以 Java 数组方式实现. String 对应 java.lang.St ...
- JAVA_SE基础——31.this关键字
黑马程序员入学blog... 也算是学习笔记体会. this的通俗解释: 有一个A类,一个B方法,一个C变量,其中B和C都在类A中 this.B()就是调用A类中的B方法 this.C=1(假设C是一 ...
- django启动uwsgi报错
查看uwsgi.log *** Starting uWSGI 2.0.17 (64bit) on [Thu Apr 5 17:46:15 2018] *** compiled with version ...
- 在Vim按了ctrl+s后
在windows我们码代码的时候习惯ctrl+s保存: 但在vim中使用ctrl+s之后终端就没反应了... vim: ctrl+s终止屏幕输出,敲的东西都有效,就是看不见. ctrl+q恢复: