4558: [JLoi2016]方

Time Limit: 20 Sec  Memory Limit: 256 MB
Submit: 452  Solved: 205
[Submit][Status][Discuss]

Description

上帝说,不要圆,要方,于是便有了这道题。由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形

上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1)个格点,我们需要做的就是找出这些格点形

成了多少个正方形(换句话说,正方形的四个顶点都是格点)。但是这个问题对于我们来说太难了,因为点数太多

了,所以上帝删掉了这(N+1)×(M+1)中的K个点。既然点变少了,问题也就变简单了,那么这个时候这些格点组成

了多少个正方形呢?

Input

第一行三个整数 N, M, K, 代表棋盘的行数、 列数和不能选取的顶点个数。 保证 N, M >= 1, K <=(N + 1) ×

(M + 1)。约定每行的格点从上到下依次用整数 0 到 N 编号,每列的格点依次用 0到 M 编号。接下来 K 行,每

行两个整数 x,y 代表第 x 行第 y 列的格点被删掉了。保证 0 <=x <=N<=10^6, 0 <=y<=M<=10^6,K<=2*1000且不

会出现重复的格点。

Output

仅一行一个正整数, 代表正方形个数对 100000007( 10^8 + 7) 取模之后的值

Sample Input

2 2 4
1 0
1 2
0 1
2 1

Sample Output

1

并没有调出来,调出来也是TLE

容斥,ans=所有格点正方形-至少含一个非法点正方形+至少含2个-至少含3个+至少含4个
容斥很简单,主要就是统计方案难啊

由于正方形有斜放的,我们规定一个n*n的框架
顶点在框架边上的正方形有i个
考虑对于每一个非法点,除去以它为顶点的正方形(正方/斜放都要考虑)
枚举两个非法点,计算以它们为顶点的正方形另外两个点,对于含2,3,4的贡献答案。
 
判断正方形的顶点是否存在,应该用hash表,由于懒,我用了stl,估计要挂。。
 
推荐blog
http://blog.csdn.net/huanghongxun/article/details/51267460

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
#define mod 100000007
#define ll long long
#define N 2005
using namespace std;
int n,m,num,px[N],py[N];
ll ans,t1,t2,t3,t4;
typedef pair<int,int>pii;
map<pii,bool>mp;
void calc(int x,int y,int z){//计算顶点在正方形框架边,顶点上的正方形个数
z=min(z,x+y);
if(!z)return;
t1=(t1+1ll*(z+3)*z/2)%mod;
if(z>x)t1=(t1-1ll*(z-x)*(z-x+1)/2)%mod;
if(z>y)t1=(t1-1ll*(z-y)*(z-y+1)/2)%mod;
}
bool check(int x,int y){return x>=0&&x<=n&&y>=0&&y<=m;}
void update(int x1,int y1,int x2,int y2){
if(!check(x1,y1)||!check(x2,y2))return;
int res=0;
if(mp[make_pair(x1,y1)])res++;
if(mp[make_pair(x2,y2)])res++;
t2++;t3+=res;if(res==2)t4++;
} void solve(int x1,int y1,int x2,int y2){
int dx=x2-x1,dy=y2-y1;
update(x1+dy,y1-dx,x2+dy,y2-dx);
update(x1-dy,y1+dx,x2-dy,y2+dx);
if (abs(dx+dy)&1) return;
dy=(dx+dy)>>1; dx-=dy;
update(x1+dx,y1+dy,x2-dx,y2-dy);
}
int main(){
#ifdef wsy
freopen("data.in","r",stdin);
#else
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
#endif
scanf("%d%d%d",&n,&m,&num);
for(int i=1;i<=num;i++){
scanf("%d%d",&px[i],&py[i]);
mp[make_pair(px[i],py[i])]=1;
}
for(int i=1;i<=min(n,m);i++)
ans=(ans+1ll*(m-i+1)*(n-i+1)%mod*i%mod)%mod;
for(int i=1;i<=num;i++){
calc(px[i],m-px[i],py[i]);
calc(px[i],m-px[i],n-py[i]);
calc(py[i],n-py[i],px[i]);
calc(py[i],n-py[i],m-px[i]);
t1=(t1-min(px[i],py[i]))%mod;//减去掉calc重复的方案
t1=(t1-min(px[i],n-py[i]))%mod;
t1=(t1-min(m-px[i],py[i]))%mod;
t1=(t1-min(m-px[i],n-py[i]))%mod;
while(t1<0)t1+=mod;
for(int j=1;j<i;j++)solve(px[i],py[i],px[j],py[j]);
}
t2%=mod;t3%=mod;t4%=mod;
cout<<ans-t1+t2-t3/3+t4/6;
return 0;
}//?????

bzoj4558[JLoi2016]方 容斥+count的更多相关文章

  1. [BZOJ4558]:[JLoi2016]方(容斥+模拟)

    题目传送门 题目描述 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形上帝把我们派到了一个有N行M列的方格图上,图上一共有$(N+1)\times ...

  2. bzoj4558: [JLoi2016]方

    Description 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形 上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1) ...

  3. bzoj千题计划281:bzoj4558: [JLoi2016]方

    http://www.lydsy.com/JudgeOnline/problem.php?id=4558 容斥原理 全部的正方形-至少有一个点被删掉的+至少有两个点被删掉的-至少有3个点被删掉的+至少 ...

  4. BZOJ.4558.[JLOI2016]方(计数 容斥)

    BZOJ 洛谷 图基本来自这儿. 看到这种计数问题考虑容斥.\(Ans=\) 没有限制的正方形个数 - 以\(i\)为顶点的正方形个数 + 以\(i,j\)为顶点的正方形个数 - 以\(i,j,k\) ...

  5. 数学(容斥计数):LNOI 2016 方

    Description 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形 上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1) ...

  6. bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法

    4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status ...

  7. 【BZOJ4559】[JLoi2016]成绩比较 动态规划+容斥+组合数学

    [BZOJ4559][JLoi2016]成绩比较 Description G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M-1的整数.一 ...

  8. ●BZOJ 4559 [JLoi2016]成绩比较(容斥)

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4559 题解: 容斥,拉格朗日插值法. 结合网上的另一种方法,以及插值法,可以把本题做到 O( ...

  9. BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...

随机推荐

  1. memmove 和 memcpy的区别以及处理内存重叠问题

    区别: memcpy和memmove()都是C语言中的库函数,在头文件string.h中,作用是拷贝一定长度的内存的内容,原型分别如下: void *memcpy(void *dst, const v ...

  2. Android属性动画 nineoldandroids

    各种资源链接 nineoldandroids 任玉刚的五个图片滑动,点击menu http://blog.csdn.net/singwhatiwanna/article/details/1763998 ...

  3. css3动画transition详解2

    transition主要包含四个属性值:执行变换的属性:transition-property,变换延续的时间:transition-duration,在延续时间段,变换的速率变化transition ...

  4. java中DelayQueue的一个使用陷阱分析

    最近工作中有接触到DelayQueue,网上搜索资料的时候发现一篇文章谈到DelayQueue的坑.点击打开链接 文中已经总结了遇到坑的地方,还有解决方案.不过我第一眼看一下没弄明白为什么,所以翻了翻 ...

  5. Hangfire使用ApplicationInsigts监控

    起因 我司目前使用清真的ApplicationInsights(以下简称Ai)来做程序级监控.(Ai相关文档: https://azure.microsoft.com/zh-cn/services/a ...

  6. NATAPP 内网映射,Visual Studio ,C# 实现本地开发微信公众号,本地调试无需服务器

    点击软件安装教程,根据安装教程,注册帐号,下载软件,配置软件.配置完后如下图,途中红色位置免费版本是随机的. 红色位置是自己的映射域名. 打开VS,并且打开项目,右键项目,在web 选项中修改项目UR ...

  7. 算法题丨Remove Element

    描述 Given an array and a value, remove all instances of that value in-place and return the new length ...

  8. 粒子系统(二):Canvas绘制精美图案

    准备 IDE:Visual Studio Code Language:JavaScript / ECMAScript 6+ GitHub:Natural2D.JS 本文主要讲述 Particles - ...

  9. Centos系统运行nodejs

    这里我们需要先搭建一下运行的环境,直接yum安装就可以了! [root@iZwz9f80ph5u8tlqp6pi9cZ ~]# yum -y install nodejs 这里我们的环境就搭好了!安装 ...

  10. python/零起点(一、列表)

    python/零起点(一.列表) 列表(list)list()可以强行转换数据类型为列表,列表是可迭代对象 列表是有序的,且列表是可变的数据类型 列表中的元素可以是(字符串.整型.元祖.列表.字典.集 ...