视频学习来源

https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553

笔记

Adam,常用优化器之一

大多数情况下,adma速度较快,达到较优值迭代周期较少,

一般比SGD效果好

CNN应用于手写识别

import numpy as np
from keras.datasets import mnist #将会从网络下载mnist数据集
from keras.utils import np_utils
from keras.models import Sequential #序列模型
#Convolution2D 是2维卷积
#MaxPooling2D 是2维最大池化
#Flatten 数据扁平化(降维)
from keras.layers import Dense,Dropout,Convolution2D,MaxPooling2D,Flatten #在这里导入dropout
from keras.optimizers import Adam

C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3_64\lib\site-packages\h5py\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.

from ._conv import register_converters as _register_converters

Using TensorFlow backend.

#载入数据
(x_train,y_train),(x_test,y_test)=mnist.load_data()
#查看格式
#(60000,28,28)
print('x_shape:',x_train.shape)
#(60000)
print('y_shape:',y_train.shape) #转化为4维
#最后一个维度图片深度,1表示黑白,3表示彩色
#rgb是红绿蓝三通道0-255表示各个通道的颜色深度
#(60000,28,28)->(60000,28,28,1)
#-1表示自动设置
#除以255是做数据归一化处理
x_train=x_train.reshape(-1,28,28,1)/255.0 #转换数据格式
x_test=x_test.reshape(-1,28,28,1)/255.0 #转换数据格式
#label标签转换成 one hot 形式
y_train=np_utils.to_categorical(y_train,num_classes=10) #分成10类
y_test=np_utils.to_categorical(y_test,num_classes=10) #分成10类 #定义序列模型
model=Sequential() #第一个卷积层
#input_shape 输入平面
#filters 卷积核/滤波器个数
#kernel_size 卷积窗口大小
#strides 步长
#padding padding方式 same/valid
#activation 激活函数
model.add(Convolution2D(
input_shape=(28,28,1),#只需要在第一次添加输入平面
filters=32,
kernel_size=5,
strides=1,
padding='same',
activation='relu'
)) #平面大小28x28,用same padding得到的和上一次一样,也是28x28,有32个特征图
#池化后变成14x14,32个特征图 #第一个池化层
model.add(MaxPooling2D(
pool_size=2, # 池化窗口大小 2x2的窗口
strides=2,
padding='same'
)) #第二个卷积层
#filters=64 kernel_seize=5
model.add(Convolution2D(64,5,strides=1,padding='same',activation='relu')) #第二个卷积层后64个特征图,14x14
#第二个池化层后64个特征图,7x7 #第二个池化层
model.add(MaxPooling2D(2,2,'same')) #把第二个池化层的输出扁平化为1维
#长度 64x7x7
model.add(Flatten()) #第一个全连接层
#1024个神经元
model.add(Dense(1024,activation='relu')) #Dropout
#训练时百分之40个神经元不工作
model.add(Dropout(0.4)) #第二个全连接层
model.add(Dense(10,activation='softmax')) #定义优化器
#学习速率为10的负4次方
adam=Adam(lr=1e-4) #定义优化器,损失函数,训练效果中计算准确率
model.compile(
optimizer=adam, #sgd优化器
loss='categorical_crossentropy', #损失用交叉熵,速度会更快
metrics=['accuracy'], #计算准确率
) #训练
#六万张,每次训练64张,训练10个周期(六万张全部训练完算一个周期)
model.fit(x_train,y_train,batch_size=64,epochs=10) #评估模型
loss,accuracy=model.evaluate(x_test,y_test) print('\ntest loss',loss)
print('\ntest accuracy',accuracy) loss,accuracy=model.evaluate(x_train,y_train) print('\ntrain loss',loss)
print('\ntrain accuracy',accuracy)

x_shape: (60000, 28, 28)
y_shape: (60000,)
Epoch 1/10
60000/60000 [==============================] - 251s 4ms/step - loss: 0.3163 - acc: 0.9127
Epoch 2/10
60000/60000 [==============================] - 263s 4ms/step - loss: 0.0861 - acc: 0.9745
Epoch 3/10
60000/60000 [==============================] - 275s 5ms/step - loss: 0.0606 - acc: 0.9812
Epoch 4/10
60000/60000 [==============================] - 266s 4ms/step - loss: 0.0469 - acc: 0.9858
Epoch 5/10
60000/60000 [==============================] - 264s 4ms/step - loss: 0.0392 - acc: 0.9878
Epoch 6/10
60000/60000 [==============================] - 267s 4ms/step - loss: 0.0333 - acc: 0.9894
Epoch 7/10
60000/60000 [==============================] - 272s 5ms/step - loss: 0.0284 - acc: 0.9915
Epoch 8/10
60000/60000 [==============================] - 267s 4ms/step - loss: 0.0255 - acc: 0.9921
Epoch 9/10
60000/60000 [==============================] - 268s 4ms/step - loss: 0.0209 - acc: 0.9934
Epoch 10/10
60000/60000 [==============================] - 256s 4ms/step - loss: 0.0185 - acc: 0.9944
10000/10000 [==============================] - 14s 1ms/step
 
test loss 0.020771756899070168
 
test accuracy 0.9934
60000/60000 [==============================] - 78s 1ms/step
 
train loss 0.009774932912984514
 
train accuracy 0.9973666666666666

(五) Keras Adam优化器以及CNN应用于手写识别的更多相关文章

  1. Tensorflow实践:CNN实现MNIST手写识别模型

    前言 本文假设大家对CNN.softmax原理已经比较熟悉,着重点在于使用Tensorflow对CNN的简单实践上.所以不会对算法进行详细介绍,主要针对代码中所使用的一些函数定义与用法进行解释,并给出 ...

  2. 简单认识Adam优化器

    转载地址 https://www.jianshu.com/p/aebcaf8af76e 基于随机梯度下降(SGD)的优化算法在科研和工程的很多领域里都是极其核心的.很多理论或工程问题都可以转化为对目标 ...

  3. [Python]基于CNN的MNIST手写数字识别

    目录 一.背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二.方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层1 (4)搭建卷积 ...

  4. tensorflow笔记(五)之MNIST手写识别系列二

    tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html ...

  5. TensorFlow 入门之手写识别CNN 三

    TensorFlow 入门之手写识别CNN 三 MNIST 卷积神经网络 Fly 多层卷积网络 多层卷积网络的基本理论 构建一个多层卷积网络 权值初始化 卷积和池化 第一层卷积 第二层卷积 密集层连接 ...

  6. keras和tensorflow搭建DNN、CNN、RNN手写数字识别

    MNIST手写数字集 MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集.手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件 ...

  7. 8.CNN应用于手写字识别

    import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.mode ...

  8. Keras手写识别例子(1)----softmax

    转自:https://morvanzhou.github.io/tutorials/machine-learning/keras/2-2-classifier/#测试模型 下载数据: # downlo ...

  9. keras RAdam优化器使用教程, keras加载模型包含自定义优化器报错 如何解决?

    本文首发于个人博客https://kezunlin.me/post/c691f02b/,欢迎阅读最新内容! python keras RAdam tutorial and load custom op ...

随机推荐

  1. 《HelloGitHub》第 32 期

    公告 新加入了 2 位机器学期的小伙伴负责机器学习专栏.项目的首页增加合作组织一栏,如有开源组织有意合作可以点击联系我. 我们还在路上,不停地前行. <HelloGitHub>第 32 期 ...

  2. 由dubbo服务禁用system.gc而引起的思考

    我一直都有一个疑问,丰巢业务服务的生产环境jvm参数设置是禁止system.gc的,也就是开启设置:-XX:+DisableExplicitGC,但是生产环境却从来没有出现过堆外内存溢出的情况.说明一 ...

  3. C#工具:WebAPI常见问题及解决方案

    Web.config中连接字符串配置问题解决方法:<ConnectionStrings>中<add>的providerName写错正确写法:providerName=" ...

  4. vivo4.0系统怎么不ROOT激活Xposed框架的教程

    在越来越多应用室的引流,或业务操作中,大多数需要使用安卓的强大Xposed框架,前几天,我们应用室采购了一批新的vivo4.0系统,大多数都是基于7.0以上系统,大多数不能够刷入Root的su权限,即 ...

  5. Redis内存模型(2):存储细节

    1. 概述 先看一下执行set hellow world时,所涉及的数据模型: (1)dictEntry:Redis是Key-Value数据库,因此对每个键值对都会有一个dictEntry,里面存储了 ...

  6. SQLServer之删除数据库架构

    删除数据库架构注意事项 要删除的架构不能包含任何对象. 如果架构包含对象,则 DROP 语句将失败. 可以在 sys.schemas 目录视图中查看有关架构的信息. 要求对架构具有 CONTROL 权 ...

  7. Error:"MetaStoreClient lost connection. Attempting to reconnect (1 of 24) after 5s. getCurrentNotificationEventId" occurs as HiveServer2 fails to start as it cannot connect to Metastore in HDP 3.0

    SupportKB Problem Description:After upgrading to HDP 3.0, the HiveServer2 fails to start and the fol ...

  8. k8s实战之从私有仓库拉取镜像 - kubernetes

    1.实战目的 从私有docker仓库拉取镜像,部署pod.上一篇中,我们搭建了私有的镜像仓库,这一篇我们将与k8s结合实战使用私有仓库. 2.登录docker 为了完成本次实战,需要登录docker, ...

  9. 基于Kubernetes 构建.NET Core 的技术体系

    很多公司技术支持岗位的工作,如配置域名,部署环境,修改复位配置,服务重启,扩容缩容,梳理和完善监控,根据开发的需要查找日志等工作,需要和开发进行大量的沟通,如什么是外网域名,什么是内网域名.A nam ...

  10. 【死磕Java并发】-----Java内存模型之happens-before

    在上篇博客([死磕Java并发]-–深入分析volatile的实现原理)LZ提到过由于存在线程本地内存和主内存的原因,再加上重排序,会导致多线程环境下存在可见性的问题.那么我们正确使用同步.锁的情况下 ...