和前两(一)题一样,不过不是异或方程组了.....

然后bzoj的新数据是用来卡精度的吧.....

所有只好在模意义下做啦

只是巨慢无比

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bitset>
using namespace std;
typedef long long ll;
const int N=;
const int P=1e9+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,c,ans,cnt;
double eps=1e-;
struct Matrix{
ll a[N];
int c;
ll& operator[](int x){return a[x];}
bool operator <(const Matrix &r)const{return c<r.c;}
}a[N];
inline ll Pow(ll a,int b){
ll re=;
for(;b;b>>=,a=a*a%P)
if(b&) re=re*a%P;
return re;
}
inline ll Inv(ll a){return Pow(a,P-);}
bool check(Matrix &a){
for(int i=;i<=m;i++) if(a[i]) return true;
return false;
}
int pivot[N];
void Gauss(){
for(int i=;i<=n;i++){
for(int j=;j<=m;j++) if(a[i][j]){
if(pivot[j]){
int pj=pivot[j];
ll t=a[i][j]*Inv(a[pj][j])%P;
for(int k=;k<=m;k++) a[i][k]=(a[i][k]-t*a[pj][k]%P+P)%P;
}else{pivot[j]=i;break;}
}
if(check(a[i])) ans+=a[i].c,cnt++;
}
}
int main(){
freopen("in","r",stdin);
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) for(int j=;j<=m;j++) a[i][j]=read();
for(int i=;i<=n;i++) a[i].c=read();
sort(a+,a++n);
Gauss();
printf("%d %d",cnt,ans);
}

BZOJ 4004: [JLOI2015]装备购买 [高斯消元同余 线性基]的更多相关文章

  1. BZOJ 4004 JLOI2015 装备购买 高斯消元+线性基

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4004 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装 ...

  2. BZOJ 4004: [JLOI2015]装备购买 高斯消元解线性基

    BZOJ严重卡精,要加 $long$  $double$ 才能过. 题意:求权和最小的极大线性无关组. 之前那个方法解的线性基都是基于二进制拆位的,这次不行,现在要求一个适用范围更广的方法. 考虑贪心 ...

  3. 【bzoj4568】[Scoi2016]幸运数字 树上倍增+高斯消元动态维护线性基

    题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征.一些旅行者希望游 ...

  4. 【bzoj4184】shallot 线段树+高斯消元动态维护线性基

    题目描述 小苗去市场上买了一捆小葱苗,她突然一时兴起,于是她在每颗小葱苗上写上一个数字,然后把小葱叫过来玩游戏. 每个时刻她会给小葱一颗小葱苗或者是从小葱手里拿走一颗小葱苗,并且 让小葱从自己手中的小 ...

  5. bzoj 4004: [JLOI2015]装备购买 拟阵 && 高消

    4004: [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 337  Solved: 139[Submit][Status ...

  6. BZOJ 4004: [JLOI2015]装备购买

    4004: [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1154  Solved: 376[Submit][Statu ...

  7. bzoj 4004 [JLOI2015]装备购买 拟阵+线性基

    [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 547[Submit][Status][Dis ...

  8. HDU3949:XOR(高斯消元)(线性基)

    传送门 题意 给出n个数,任意个数任意数异或构成一个集合,询问第k大个数 分析 这题需要用到线性基,下面是一些资料 1.高斯消元&线性基&Matirx_Tree定理 笔记 2.关于线性 ...

  9. bzoj2115 [Wc2011] Xor——高斯消元 & 异或线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2115 异或两次同一段路径的权值,就相当于没有走这段路径: 由此可以得到启发,对于不同的走法, ...

随机推荐

  1. HDU--2024

    C语言合法标识符 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  2. Ceph部署(一)集群搭建

    背景 Ceph简介 Ceph是一个分布式存储,可以提供对象存储.块存储和文件存储,其中对象存储和块存储可以很好地和各大云平台集成.一个Ceph集群中有Monitor节点.MDS节点(可选,用于文件存储 ...

  3. 关于layer的坑

    真是自己给自己挖坑,坑死人不偿命啊. 在用layui开发时,遇到这种情况,点击按钮出现一个弹出层,然而我不是用button按钮去实现的,而是用a标签做的,本来a标签也是可以实现的,在这里我无形中给自己 ...

  4. Linux中安装opencv-3.3.1

    在ubuntu16.04中安装opencv3.3.1的过程中踩了许多坑.一开始直接安装还挺顺利但运行程序时总是提示libgtk2.0-dev和pkg-config没有安装,在安装这两个包的过程中也不顺 ...

  5. PHP编码规范及建议

    <h3 align="center">PHP编码规范及建议</h3>### 编码规范- PHP代码文件必须以 <?php 标签开始.```<?p ...

  6. 评论发布信息可插入QQ表情

    demo例子: HTML文本内容: <template> <div id="publish"> <!-- 发布内容输入框,利用Html5的新属性con ...

  7. Python-Blog2-编写Web app 骨架

    撸代码之前让我们先来看几个概念: 什么是协程(Coroutine)? 假设现在有两个子程序,子程序A和子程序B: def A(): print('1') print('2') print('3') d ...

  8. docker结合jenkins、gitlab实现.netcore的持续集成实践

    本文的目标是实现下图基于ASP NET Core的实践 运行环境 Cent OS 7 vs code .net core cmder 运行docker,设置docker镜像加速器,不然国内下载imag ...

  9. sqllite小型数据库的使用

    1.适用场景:免安装型数据库:数据量不大,本地化管理:不依赖其他第三方类库:2.具体使用方法:添加sqllite类库引用 数据库连接定义,数据库以文件形式存储在sqllitedb/solution.d ...

  10. FORTH运算符

    body, table{font-family: 微软雅黑} table{border-collapse: collapse; border: solid gray; border-width: 2p ...