程序片段(01):01.一对一模式.c+02.中介者模式.c+03.广播模式.c

内容概要:事件

///01.一对一模式.c
#include <stdio.h>
#include <stdlib.h>
#include <Windows.h> //01.关于多线程:
// (临界区+互斥量):线程冲突
// (事件):线程通信
// (时间):同步线程
HANDLE eventArrA[2] = { 0 };
HANDLE threadArrA[2] = { 0 }; DWORD WINAPI haiHua(void * p)
{
printf("海华第01次说:i love you fangFang, please help me debug! \n");//信息通信内容
Sleep(1000);//信息传递时间
SetEvent(eventArrA[0]);//提示信息传到
int i = 1;
while (++i)
{
WaitForSingleObject(eventArrA[1], INFINITE);//等待信息传到
printf("海华第%02d次说:i love you fangFang, please help me debug! \n", i);
Sleep(1000);
//ResetEvent(eventArrA[1]);//重置信息提示(手动)
SetEvent(eventArrA[0]);
} return 0;
} DWORD WINAPI fangFang(void * p)
{
int i = 0;
while (++i)
{
WaitForSingleObject(eventArrA[0], INFINITE);
printf("王芳第%02d次说:sorry! but i love you! \n", i);
Sleep(1000);
SetEvent(eventArrA[1]);
}
return 0;
} //02.关于CreateEvent(arg1, arg2, arg3, arg4);
// arg1:安全属性集---->通常用NULL
// arg2:手动重置事件-->手动:TRUE|自动:FALSE
// 注:使用一次事件通知,用TRUE,使用多次事件通知,用FALSE
// 注:使用一次线程通信,通常用的是信号量机制,而不是事件机制
// arg3:事件激活状态-->通常用FALSE
// arg4:事件唯一名称-->自定义(便于检索指定事件)
int main01(void)
{
eventArrA[0] = CreateEvent(NULL, FALSE, FALSE, NULL);
eventArrA[1] = CreateEvent(NULL, FALSE, FALSE, NULL);
threadArrA[0] = CreateThread(NULL, 0, haiHua, NULL, 0, NULL);
threadArrA[1] = CreateThread(NULL, 0, fangFang, NULL, 0, NULL);
WaitForMultipleObjects(2, threadArrA, TRUE, INFINITE);//维持多线程异步并发执行的状态 system("");
} //01.事件深入:
// 1.事件用于线程通信
// 2.事件的额外细节:三个案例
// 双方通话---->三方通话---->一对多模式
// (相亲) (媒婆)中介者 (广播)广播模式
//02.了解一些问题:
// (临界区+互斥+原子变量):线程冲突
// 事件:线程通信
// 时间:同步线程
//03.什么是死锁?
// 编写事件的时候最容易遇到死锁的事情!
//04.现在我们需要几个信号量,而且这个信号量我们用什么来进行描述?
// 时间通知+信号量
//05.顺序不严密:
// 1.等待信号之后,信号需要复原才行,否则会出现不正常的情况(信号错乱!)
// 2.信号不同步和乱序的解决方案-收到信号之后进行复位
// (1).信号复位情况--必须复位,某些情况之下自动复位,建议主动复位
// (2).围绕信号:的False&TRUE的分别
// 第二个参数:密切相关-自动&手动[复位情况]
///02.中介者模式.c
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#include <Windows.h> HANDLE threadArrB[3] = { 0 };
HANDLE eventArrB[4] = { 0 }; char strB[256] = { 0 };//线程通信内容 //01.三方通话:中介者设计模式
// 海华向中介者:发出事件通知0
// 中介者等海华:等待事件通知0
// 中介者向芳芳:发出事件通知1
// 芳芳等中介者:等待事件通知1
// 芳芳向中介者:发出事件通知2
// 中介者等芳芳:等待事件通知2
// 中介者向海华:发出事件通知3
// 海华等中介者:等待事件通知3
// 海华向中介者:发出事件通知0
DWORD WINAPI haiHuaB(void * p)
{
sprintf(strB, "海华第01次说:i love you fangFang, please help me debug! \n");//发出通信内容
Sleep(1000);//模拟通信时间
SetEvent(eventArrB[0]);//提示通信到达
int i = 1;
while (++i)
{
WaitForSingleObject(eventArrB[3], INFINITE);
memset(strB, '\0', 256);
sprintf(strB, "海华第%02d次说:i love you fangFang, please help me debug! \n", i);
Sleep(1000);
SetEvent(eventArrB[0]);
}
return 0;
} DWORD WINAPI ruiFuB(void * p)
{
int i = 0;
int status = 0;//切换通信对象
while (++i)
{
if (!status)
{
WaitForSingleObject(eventArrB[0], INFINITE);
printf("媒婆传递海华通信内容(传递次数:%02d): \n", i);
printf("\t%s \n", strB);
Sleep(1000);
SetEvent(eventArrB[1]);
status = 1;
}
else
{
WaitForSingleObject(eventArrB[2], INFINITE);
printf("媒婆传递芳芳通信内容(传递次数:%02d): \n", i);
printf("\t%s \n", strB);
Sleep(1000);
SetEvent(eventArrB[3]);
status = 0;
}
}
return 0;
} DWORD WINAPI fangFangB(void * p)
{
int i = 0;
while (++i)
{
WaitForSingleObject(eventArrB[1], INFINITE);
memset(strB, '\0', 256);
sprintf(strB, "王芳第%02d次说:sorry! but i love you! \n", i);
Sleep(1000);
SetEvent(eventArrB[2]);
}
return 0;
} int main02(void)
{
eventArrB[0] = CreateEvent(NULL, FALSE, FALSE, L"haiHua");
eventArrB[1] = CreateEvent(NULL, FALSE, FALSE, L"ruiFuToFang");
eventArrB[2] = CreateEvent(NULL, FALSE, FALSE, L"fangFang");
eventArrB[3] = CreateEvent(NULL, FALSE, FALSE, L"ruiFuToHua");
threadArrB[0] = CreateThread(NULL, 0, haiHuaB, NULL, 0, NULL);
threadArrB[1] = CreateThread(NULL, 0, ruiFuB, NULL, 0, NULL);
threadArrB[2] = CreateThread(NULL, 0, fangFangB, NULL, 0, NULL);
WaitForMultipleObjects(3, threadArrB, TRUE, INFINITE); system("pause");
} //01.中介者模式&广播模式&图论模式[多对多]
// 中介者:三方
// 广播:一对多
// 图论:多对多
//注:多线程这块儿必须要会树和图
//02.一对多的情况下:
// 既可以采用数组进行管理也可以采用链表进行管理
//03.涉及到树的情况之下:
// QQ群聊天儿多线程,练就数据结构
//04.一对多&多对多:
// 群聊原理:中介者-->每个人进行转发
// 中介者进行转发原理-->数组管理-->数组广播-->群聊模式
//05.流程梳理:
// 1.我发送一条消息,中介者收到之后,他进行群发动作
// 2.中介者的衍生模式-->形成闭环-->选好起始点
//06.编程思想:精髓
// 原则上一个消息全局变量读取特点
// 相当于是一个公告栏,权限读取
//07.操作:
// 定义全局变量,便于读取全局变量的数据
///03.广播模式.c
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#include <Windows.h> HANDLE threadArrC[10] = { 0 };
HANDLE eventArrC[1] = { 0 }; char strC[256] = { 0 };//线程通信内容
char chrArr[10] = { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K' };//代表十个人 //01.一个线程发出事件通知消息,多条线程监听该事件通知消息
// 一对多的模式
DWORD WINAPI haiHuaC(void * p)
{
char * pChr = (char *)p;
printf("i am %c haiHua's gir friend! \n", *pChr);
if ('A' == *pChr)
{
MessageBox(0, TEXT("1"), TEXT("1"), 0);//暂停通知线程
sprintf(strC, "海华女友%c speak:xiaohuahua lovely! \n", *pChr);//消息通知内容
SetEvent(eventArrC[0]);//发出事件通知
MessageBox(0, TEXT("1"), TEXT("1"), 0);//暂停通知线程
sprintf(strC, "海华女友%c speak:xiaohuahua lovely! \n", *pChr);//消息通知内容
SetEvent(eventArrC[0]);//发出事件通知
}
int i = 0;
while (++i)
{
WaitForSingleObject(eventArrC[0], INFINITE);//等待事件通知
printf("haiHua's girl friend %c read %s! \n", pChr, strC);
Sleep(1000);
ResetEvent(eventArrC[0]);
} return 0;
} int main03(void)
{
eventArrC[0] = CreateEvent(NULL, TRUE, FALSE, NULL);
for (int i = 0; i < 10; ++i)
{
threadArrC[i] = CreateThread(NULL, 0, haiHuaC, &chrArr[i], 0, NULL);
}
WaitForMultipleObjects(10, threadArrC, TRUE, INFINITE); system("pause");
} //01.中介者设计模式之广播模式:QQ群聊原理
// 群聊-->数组-->链表-->环状-->局域网:环状结构[网络可靠性]
//02.QQ的开发:不仅有发送和收取消息-->所以线程非常多
// 信号对称-->需要进行手动进行事件的设置
// 一对一:自动
// 中介者:自动
// 一对多:手动
// 多对多:手动

程序片段(02):01.Semaphore.c+02.SemaphoreNew.c

内容概要:信号量

///01.Semaphore.c
#include <stdio.h>
#include <stdlib.h>
#include <Windows.h> //01.信号量:
// 1.类似于空位的特点:
// 2.空置多少个位置就可以容纳多少个并行线程执行
//注:当空余的位置为0的时候,也就不能在另起线程执行任务了
#define id L"haiHua"//信号ID
#define MAX 3//空位数 //02.多线程信号量(semaphore)通信:
// 1.特点:打开一个信号量(等同于检索一个指定ID名称的信号量)
// 2.格式:HANDLE mySema = OpenSemaphore(arg1, arg2, arg3);
// arg1:信号量检索范围(SEMAPHORE_ALL_ACCESS)
// arg2:继承特性
// arg3:信号量检索名称(自定义名称,在固定范围内唯一标识信号量)
// 3.刚打开信号量的时候:
// 信号量的空位为0,也就是无法开启新的异步线程执行任务
// 信号量的空位为N,也就是说此刻可以开启N条异步线程执行任务代码
//注:空位为N,表示除开当前线程之外可以另起的异步线程个数
DWORD WINAPI myWorker(void * p)
{
int * pInt = (int *)p;
printf("worker:%d si running! \n", *pInt);
HANDLE mySema = OpenSemaphore(SEMAPHORE_ALL_ACCESS, FALSE, id);//指定范围检索指定名称的信号量
if (mySema)//判断信号量是否存在
{
printf("worker:%d is waiting! \n", *pInt);//表示当前线程处于判定信号量状态
Sleep(1000);
if (WaitForSingleObject(mySema, INFINITE) == WAIT_OBJECT_0)//等待空位为0
{//如果信号空位为0,也就是无法开启异步线程的情况
printf("worker:%d is getting! \n", *pInt);//此时只有当前线程获得CPU执行权,其它线程无法获取CPU可执行权
Sleep(3000);
printf("worker:%d is leaving! \n", *pInt);
ReleaseSemaphore(mySema, 1, NULL);//释放信号:只是打开一个空位,也就是可以开启另外一条异步线程进行执行了
CloseHandle(mySema);//释放资源信号量资源
}
}
return 1;
} //03.创建信号量:
// 1.特点:初始化信号量对象
// 2.格式:HANDLE mySema = CreateSemaphore(arg1, arg2, arg3, arg4);
// arg1:安全属性集
// arg2:初始空位数
// arg3:最大空位数
// arg4:信号量名称
int main01(void)
{
HANDLE mySema = CreateSemaphore(NULL, 0, MAX, id);
HANDLE threadArr[10] = { 0 };
for (int i = 0; i < 10; ++i)
{//由于当前信号量为0,因此多条执行同一段儿代码的时候,需要判定能否通过
threadArr[i] = CreateThread(NULL, 0, myWorker, threadArr + i, 0, NULL);
}
Sleep(5000);
printf("激活状态! \n");
ReleaseSemaphore(mySema, MAX, NULL);//释放信号量
WaitForMultipleObjects(10, threadArr, TRUE, INFINITE);
CloseHandle(mySema); system("pause");
} //01.信号量:Semaphore
// 1.量值:0-1-2-3
// 2.使用一次进行一次减数,到了一定的数据之后,做一些指定操作
// 当数据减到至0的时候,信号为0,在使用信号量的地方,处于停滞状态
// 3.信号量还可以做一些其他的限定操作
// 4.线程通信:用途
// 5.具备等待机制
//02.信号计数原理:
// 1.两个按键入口,多个行李
// 2.信号衰减原理:空位原理
// 信号为0的时候,没有空位为0,通过判断信号的空位情况,决定是否让线程干活儿
// 等待唤醒机制0与非0的区别(非0,线程可执行,0线程不可执行)
//03.关卡原理:
// 1.同时最多支持10000个人购票
// 2.如果超过10000个人,就需要排队
// 3.当10000个人购票完毕的时候,重新开启线程执行任务
//04.原理:if 0 等下去
// 1.同一个信号量
// 2.10个线程
// 3.状态判定:
// 0-->10个等待
// 5-->5个等待,5个执行
// 执行一次,减去一次-->信号量衰减
// 4.所有的线程都能够读取到该信号量
// 多个线程占用资源:等待执行状态
// 用完与没有用完(线程不可执行状态与线程可执行状态)
//05.信号量完全解析:
// 步骤一:
// HANDLE hSEM=CreateSemaphore(NULL,0,MAX,id);
// 创建一个信号量,信号量的最大值为MAX,如果等于0的情况之下,它就在这儿死等下去
// 步骤二:
// ReleaseSemaphore(mySema,MAX,NULL);//释放信号量,补充空位数量
// 一旦将信号量设定为5就会开始进行执行
//06.什么样儿的情况之下我们使用信号量?
// 实现两个线程的死锁状态,设定为1这个信号量,进或者不进
///02.SemaphoreNew.c
#include <stdio.h>
#include <stdlib.h>
#include <Windows.h> int num = 0; //01.信号量的应用:
// 1.排队执行机制
// 让多个线程处于执行状态,让多个线程处于休眠状态
// 2.实现线程互斥
// 让一个线程处于执行状态,让其它所有线程处于等待状态
DWORD WINAPI add(void * p)
{
HANDLE mySema = OpenSemaphore(SEMAPHORE_ALL_ACCESS, FALSE, L"xiaobin");//打开信号量:
if (mySema)
{
if (WAIT_OBJECT_0 == WaitForSingleObject(mySema, INFINITE))
{//判断信号强弱(判断信号量的数目,也就是判断空位数目)
for (int i = 0; i < 10000; ++i)
{
++num;
}
ReleaseSemaphore(mySema, 1, NULL);
CloseHandle(mySema);
}
}
else
{
printf("打开信号量失败! \n");
}
} int main02(void)
{
//01.实现线程互斥的关键代码:
// 最多只能有一个空位(最多只能同时有一条线程处于执行状态)
HANDLE mySema = CreateSemaphore(NULL, 0, 1, L"xiaobin");
HANDLE threadArr[64] = { 0 };
for (int i = 0; i < 64; ++i)
{
threadArr[i] = CreateThread(NULL, 0, add, NULL, 0, NULL);
}
printf("激活线程");
ReleaseSemaphore(mySema, 1, NULL);
WaitForMultipleObjects(64, threadArr, TRUE, INFINITE);
printf("num = %d \n", num);
CloseHandle(mySema); system("pause");
} //01.信号量可以实现多个线程的卡顿现象
//02.信号量的空位原理-->0和1的原理:互斥特点
// 入职与离职原理的特点-->空位原理
//03.如何使用信号量实现一个全局变量的自增?
// 互斥类型的方式实现-->使用信号量实现线程之间的互斥现象
//04.随机数的求取方法:
// 1.原始函数
// 2.多线程的数据丢失
//05.多线程处理状态下的CPU是不会稳定的情况
//06.信号量:0代表没有空位-->线程等待状况
// 控制访问次数
//07.互斥量与信号量的区别:
// 互斥量:只能让一个线程处于运行状态
// 信号量:可以让多个线程处于运行状态,其他线程休眠
// 临界区:只能让一个线程处于运行状态
// 时间同步:
// 事件:也可以实现让多个线程处于运行状态,其他线程休眠状态
// 原子操作:操作速度最快,因为它不需要等待操作线程,几乎直接运行状态
//注:原子量的速度快在于无需让多条线程处于等待执行状态,其他线程互斥的方式
// 存在着线程等待执行的状态

程序片段(03):01.互斥.c+02.互斥读写.c

内容概要:互斥锁

///01.互斥.c
#include <stdio.h>
#include <stdlib.h>
#include <Windows.h> int static num = 6400000; //01.全局写入锁
// 当一个线程在进行指定变量的写入操作的时候;
// 其它线程若是需要写入这个指定变量数据,那么
// 其他线程只能处于等待执行写入数据的状态
SRWLOCK gw_lock = { 0 }; static DWORD WINAPI write(void * p)
{//多线程写入状态下,同一时刻只能由一条线程执行写入状态!
AcquireSRWLockExclusive(&gw_lock);//获得独立写入锁(进入锁定状态)
for (int i = 0; i < 100000; ++i)
{
--num;
}
ReleaseSRWLockExclusive(&gw_lock);//释放独立写入锁(释放锁定状态)
return 0;
} int main01(void)
{
InitializeSRWLock(&gw_lock);
HANDLE threadArr[64];
for (int i = 0; i < 64; ++i)
{
threadArr[i] = CreateThread(NULL, 0, write, NULL, 0, NULL);
}
//num += 10000;//没有生效,说明互斥锁的原则是全局生效,是对所有线程生效!
WaitForMultipleObjects(64, threadArr, TRUE, INFINITE);
printf("num = %d \n", num); system("pause");
} //01.互斥锁的概念:互斥
// 如同交往一个女友之后就被锁定了
//02.互斥锁问题:
// 线程互斥:同一时刻,只能由同一个线程执行数据操作
//03.线程的互斥实现方式:
// 临界区-->互斥量-->原子操作-->事件-->信号量-->互斥锁
//04.互斥锁的创建流程:
// 全局变量:定义互斥量
// SRWLOCK g_lock;
// Main函数:初始化互斥量
// InitializeSRWLock(&g_lock);
// 数据锁定:写入和读取的锁定
// 线程函数:
// AcquireSRWLockExclusive(&g_lock);//锁定写入
// ReleaseSRWLockExclusive(&g_lock);//锁定释放
//05.互斥锁的使用场景:
// 1.改变一个变量的时候需要锁定(防止同时读取,同时写入)
// 2.读取一个变量的时候也需要锁定(防止同时写入,同时读取)
///02.互斥读写.c
#include <stdio.h>
#include <stdlib.h>
#include <Windows.h> int num = 6400000;//待读写的数据 SRWLOCK g_lock = { 0 };//写入锁 DWORD WINAPI write(void * p)
{
printf("开始写入! \n");
AcquireSRWLockExclusive(&g_lock);
for (int i = 0; i < 100000; ++i)
{
--num;
//Sleep(10);
}
ReleaseSRWLockExclusive(&g_lock);
printf("结束写入! \n");
return 0;
} DWORD WINAPI read(void * p)
{
printf("读取状态! \n");
AcquireSRWLockShared(&g_lock);
int i = 0;
while (1)
{
++i;
Sleep(1000);
printf("第%d秒, num = %d \n", i, num);//由于写入状态锁定了,因此这里的读取状态,无法读取到数据
if (20 == i)
break;
}
ReleaseSRWLockShared(&g_lock);
printf("读取结束! \n");
return 0;
} int main02(void)
{
InitializeSRWLock(&g_lock);
CreateThread(NULL, 0, read, NULL, 0, NULL);
HANDLE threadArr[64] = { 0 };
for (int i = 0; i < 64; ++i)
{
threadArr[i] = CreateThread(NULL, 0, write, NULL, 0, NULL);
}
WaitForMultipleObjects(64, threadArr, TRUE, INFINITE);
printf("num = %d \n", num); system("pause");
} //01.互斥锁的读写状态控制
// 写入的状态下不可读取,读取的状态下不可写入
//02.锁定状态,读取完成之后才进行锁定
//03.一个资源只能锁定一次,不能锁定多次
//04.锁定-->防止冲突问题-->读取和写入的状态
// 防止同时写入和读取数据

程序片段(04):Mutex.c

内容概要:01.跨进程Mutex(发互斥)

#include <stdio.h>
#include <stdlib.h>
#include <Windows.h> char name[100] = "haihualovefang"; int main(void)
{
//01.创建互斥量"Mutex":
// 位于内核层|Ring0层
HANDLE myMutex = CreateMutexA(NULL, TRUE, name);
printf("在内核层|Ring0层创建互斥量(Mutex)成功! \n");
char chr = getch();//实时获取单个字符
//02.释放互斥量:
// 相当于发出通知
ReleaseMutex(myMutex);
//03.关闭互斥量:
CloseHandle(myMutex);
system("pause");
} //01.关于跨进程的驱动访问:内核对象
// 无论是Windows还是Linux都是存在互斥量说法
//02.如果是跨进程的话:
// 创建跨进程的Mutext需要有名称(便于全局访问)
//03.编写网络程序的时候:
// 既需要编写客户端也需要编写网络端
// -->编写两个程序的时代
//04.演示的时候需要:
// 进行编译好的程序之间的演示
//05.跨进程通信:
// 1.Event&Mutex&semaphore都可以实现跨进程的线程通信
// 2.Mutex是最安全的跨进程线程访问(因为能够处理发送通知方的断开情况)
// 发出通信信息的进程退出情况能够处理!

程序片段(05):Mutex.c

内容概要:02.跨进程Mutex(收互斥)

#include <stdio.h>
#include <stdlib.h>
#include <Windows.h> char name[100] = "haihualovefang"; int main(void)
{
//01.打开互斥量:
// 作用:获取互斥量
// 格式:HANDLE mutex = OpenMutexA(arg1, arg2, arg3);
// mutex:互斥量+arg1:检索范围+arg2:继承句柄+互斥量名称
HANDLE myMutex = OpenMutexA(MUTEX_ALL_ACCESS, TRUE, name);//获取互斥量
//if (NULL == myMutex)//判定互斥量
//{
// printf("获取互斥量失败! \n");
// system("pause");
// return;
//}
printf("等待状态! \n");
//02.控制互斥量的等待时间:
// 先获得互斥量-->设定等待状态时间(等待指定的时间范围!)
DWORD res = WaitForSingleObject(myMutex, 10000);//设置等待状态
switch (res)
{
case WAIT_OBJECT_0:
printf("收到跨进程信号! \n");
break;
case WAIT_TIMEOUT:
printf("等待跨进程信号超时! \n");
break;
case WAIT_ABANDONED:
printf("另外一个进程发生终止!结束跨进程信号等待状态! \n");
break;
default:
break;
} CloseHandle(myMutex);
system("pause");
} //01.刚才的程序特点:
// 都是出于同一个进程内的线程操作(同一进程)
//02.C++关于"事件"和"信号量"的封装:
// 封装通用的一个机制,Cocos2dx的时候都是一样的情况
// 包含OC也一样,只不过它们将接口内容进行了简化
//03.多线程的强化:
// 1.event&mutex&semaphore:(驱动层|Ring0层)
// 本质:是处于驱动里面的一个综合信号量
// 2.操作系统起到什么作用?
// (1).操作系统类似于一个巨大的进程,里面运行的每个程序类似于线程
// (类比:大进程&进程)<--->(进程&线程)
// (2).电脑重启,打开多个.exe都需要重启
// (3).操作系统和应用程序之间的关系就如同进程和线程之间的关系
// (4).高级机制:内核对象(Ring0层对象)
//04.操作系统的高级机制:内核对象-->项目使用-->跨进程使用
// 1.操作系统的分层机制:
// (1).ring0:就是最底层,这里可以用于编写驱动(出错:蓝屏)
// (2).ring3:就是应用层,(出错:进程出错)
// 2.线程互斥区分机制:
// (1).event&mutex:
// 这里创建的指针处于应用层,但是指针所指向的内存处于ring0层
// ring0层当中的对象可以看到所有进程的内存(最高访问权限)
// (2).进程之间不可以进行相互读写,必须通过注射方式
// (3).event&mutex都是出于ring0层的内核对象
// 本质:对象的底层特点
// 所以:它们不仅可以用于一个进程内的线程互斥,还可以用于多个进程之间的线程互斥
//05.mutex的互斥问题解析:
// 1.跨进程的mutex互斥问题
// 2.C++的线程库都是对C语言多线程的封装
// 大概原理-->C++的类使用
//06.关于跨进程通信的问题:
// 最好使用互斥量(mutex)实现跨进程通信
// 原因:其他方式(event&semaphore)不能处理进程断开的情况!

程序片段(06):发事件.c

内容概要:01.跨进程Event(发事件)

#include <stdio.h>
#include <stdlib.h>
#include <Windows.h> char name[100] = "haihualovefang"; //01.Event实现跨进程通信:
// 1.这儿的Event不是线程级别的含义,而是进程级别的含义:
// 该Event实质上是位于(内核|Ring0层),因此可以实现跨进程通信
// 2.参数说明:第二个参数表示是否重置手动重置事件状态
// TRUE:手动重置+FALSE:自动重置
int main(void)
{
HANDLE myEvent = CreateEventA(NULL, FALSE, FALSE, name);//创建事件
printf("跨进程Event创建成功! \n");
char chr = getch();
SetEvent(myEvent);//设置事件
printf("发送跨进程Event事件! \n"); CloseHandle(myEvent);
system("pause");
} //01.严格区分跨线程和跨进程
//02.使用Event实现跨进程线程访问
//03.Event和Mutex有一定的区别:
// Event跨进程不能使用匿名的,否则的话找不到
//注:跨进程一定要采用唯一名称标识信号
//04.TCP/UDP的时候就是如此复杂的情况
//05.一般进程与进程之间都需要设定一个超时等待时间
//06.Event天生的缺陷:
// 只有Mutex可以感知到另外一个进程的丢失
// Event不具备感知进程丢失的功能
//注:进程通信情况之下的进程丢失情况分析!

程序片段(07):收事件.c

内容概要:02.跨进程Event(收事件)

#include <stdio.h>
#include <stdlib.h>
#include <Windows.h> char name[100] = "haihualovefang"; int main(void)
{
//01.打开事件:
// 获取跨进程所创建的事件
HANDLE myEvent = OpenEventA(EVENT_ALL_ACCESS, TRUE, name);//获取事件
if (NULL == myEvent)
{
printf("跨进程Event获取失败! \n");
system("pause");
return;
}
printf("跨进程Event等待状态! \n");
DWORD res = WaitForSingleObject(myEvent, 10000);
switch (res)
{
case WAIT_OBJECT_0:
printf("跨进程Event收到状态! \n");
break;
case WAIT_TIMEOUT:
printf("跨进程Event超时状态! \n");
break;
case WAIT_ABANDONED:
printf("另外一个进程已经中止! \n");
break;
default:
break;
} CloseHandle(myEvent);
system("pause");
}

程序片段(08):发信号.c

内容概要:01.跨进程Semaphore(发信号)

#include <stdio.h>
#include <stdlib.h>
#include <Windows.h> char name[100] = "haihualovefang"; int main(void)
{
HANDLE mySema = CreateSemaphoreA(NULL, 0, 1, name);
printf("跨进程Semaphore信号量创建成功! \n");
char chr = getch();
ReleaseSemaphore(mySema, 1, NULL);
printf("跨进程Semaphore发出信号! \n"); CloseHandle(mySema);
system("pause");
} //01.当一条线程做完一件事情之后,需要通知其他线程的时候:
// 这个时候就需要进行线程之间的通信
//注:区分线程通信与进程通信
//02.大数据你就得将图论和树结构玩儿的相当好才行
// 图和树就是用于管理这么多的线程的
//03.线程与线程之间的关系是很复杂的:
// 需要掌握逻辑&排序&容错&模糊
//04.跨进程的线程通信:
// Event&Mutex&Semaphore
//05.使用跨进程通信的时候:
// 1.最佳解决方案就是Mutex
// 2.缺点比较:
// Event&Semaphore:发信信号的进程关闭之后无法感知到!
// Mutex:发送信号的进程关闭之后能够被感知到!

程序片段(09):收信号.c

内容概要:02.跨进程Semaphore(收信号)

#include <stdio.h>
#include <stdlib.h>
#include <Windows.h> char name[100] = "haihualovefang"; int main(void)
{
HANDLE mySema = OpenSemaphoreA(SEMAPHORE_ALL_ACCESS, TRUE, name);
if (NULL == mySema)
{
printf("跨进程Semaphore创建失败! \n");
system("pause");
return;
}
printf("跨进程Semaphore等待状态! \n");
DWORD res = WaitForSingleObject(mySema, 10000);
switch (res)
{
case WAIT_OBJECT_0:
printf("跨进程Semaphore通信收到! \n");
break;
case WAIT_TIMEOUT:
printf("跨进程Semaphore通信超时! \n");
break;
case WAIT_ABANDONED:
printf("另外一个进程已经中止! \n");
break;
default:
break;
} CloseHandle(mySema);
system("pause");
}

程序片段(10):TimePrc.c

内容概要:时间同步

#include <stdio.h>
#include <stdlib.h>
#include <Windows.h> //01.时间同步:标准回调函数格式
// 1.小写"void"和大写"VOID"实质一样-->在这儿只是回调函数的规范
// 2.参数:普通指针+时间1[低点]+时间2[高点]-->相当于时差
// 3.创建一个回调函数格式的函数指针常量
// 4.回调函数:CALLBACK的标识定义(标准定义)
VOID CALLBACK timeRun(void * pArg, DWORD timeLow, DWORD timeHigh)
{
DWORD dwindex = *(DWORD *)pArg;
printf("第%d次! \n", dwindex);
MessageBoxA(0, "1", "2", 0);
} //02.Win操作系统之下使用系统自带的定时器资源:
// 1.创建定时器:有几个函数-->起到等待作用的定时器
// 2.参数:arg1,arg2,arg3-->arg3是定时器的名称
// 3.匿名定时器只能有一个,携带名称的定时器可以有多个!
int main(void)
{
HANDLE time1 = CreateWaitableTimerA(NULL, TRUE, "haihua");
if (NULL == time1)
{
printf("定时器创建失败! \n");
}
//设置定时器特点
LARGE_INTEGER myTime;
myTime.QuadPart = -50000000;//单位:0.1微妙--万分之一毫秒
//SetWaitTimer:定义解释
// _In_ HANDLE hTimer;定时器
// _In_ const LARGE_INTEGER * 1pDueTime;//时间
// _In_ LONG 1Period;//循环次数
// _In_opt_ PTIMERAPCROUTINE pfnCompletionRoutine;//函数指针
// _In_opt_ LPVOID 1pArgToCompletionRoutline;//参数
// _In_ BOOL fResume;//始终恢复状态
//设置等待的定时器(等待定时器)
DWORD dwparam = 1;
//1000说明1000毫秒-->1分钟干一次,回调间隔
if (SetWaitableTimer(time1, &myTime, 1000, timeRun, &dwparam, FALSE))
{//五秒钟之后触发该事件:1|0
printf("等待5秒之后开始干活儿! \n");
for (int i = 0; i < 15; ++i, ++dwparam)
{//执行次数-->循环多少次,就回调多少次
SleepEx(INFINITE, TRUE);
}
}
//循环完毕之后所需执行的操作:
// 取消定时器和关闭句柄资源
CancelWaitableTimer(time1);
CloseHandle(time1); if (WAIT_OBJECT_0 == WaitForSingleObject(time1, INFINITE))
{//等待消息成功
printf("wait ok! \n");
}
else
{
printf("wait no! \n");
} system("pause");
} //01.多线程与队列:
// 实现文件加密
//02.关于"时间定时器"的一些操作:
// 简单定时器-->允许回调函数
//03.时间同步问题:
// 1.主要用于解决多个线程的时间问题[多线程]
// 2.围绕时间定时器,每隔一段事件干一定的活儿
// 3.满足一定的时间条件,然后解决一定的问题
//04.回调函数与时间的概念:
// 1.触发函数的动作-->回调动作
// 2.执行完一段代码之后,执行某一个函数
//05.回调函数原理:
// 1.数据1,2-->根据符号进行运算
// 2.整体函数[参数1+参数2+函数指针]
// 3.定时器触发一个函数的执行
// 4.多个线程在同一时间要干某些事件
//06.同一个事件通知多个事件的执行
//07.回调函数:Callback
// 1.函数指针,可以进行调用-->实现任何代码都可以进行自定义
// 2.整合功能:自定义功能以及它定义功能
//08.函数指针:新的功能-->函数指针-->功能随时更换
// 1.百度搜索原理
// 2.百度后台的搜索算法的改变
// 3.用户调用的时候会根据函数指针的区别[付钱状态,区域]
//09.创建多个定时器需要根据名称进行区分
//10.定时器的使用步骤:
// 1.创建定时器:
// HANDLE time1=CreateWaitableTimerA(NULL,TRUE,"haihua");
// 2.五秒钟之后启动定时器:
// LARGE_INTEGER mytime;
// mytime.QuadPart=-50000000;
// 3.定时器回调函数:
// if(SetWaitableTimer(time1,&mytime,3000,timerun,&dwparam,FALSE)){}
// 回调周期:3000毫秒之后循环一次-->循环多少次
//11.时间同步:主要用于游戏的开发
// 内核对象:游戏开发-->为了时间而单独编写一条线程不划算
// CreateWaitableTimerA();-->内核对象
// SetWaitableTimer();-->内核对象
// 内核对象-->多个时钟都有一个名称-->我就可以让多个线程同时读取一个时钟,进行操作,避免耗费资源

程序片段(11):volatile.c

内容概要:Volatile

#include <stdio.h>
#include <stdlib.h>
#include <limits.h> void main01()
{
for (volatile int i = 0; i < INT_MAX; i++)
{//(1)区分Debug模式和Release[+]模式
//(2)优化:强制读取内存
} system("pause");
} void main02()
{
volatile int i = 10;
int a = i;
printf("\ni=%d", a); //{偷偷改变i的值}
_asm
{//(1)_asm是汇编语言
//(2)修改数据-->栈底的内存是ebp,这里让其-4,也就是i这个栈底数据的改变
//(3)16进制的20h=32
//(4)这里的i已经不再寄存器里面,所以volatile强制读取内存当中经过修改之后的数据
//(5)ebp-4相当于栈底的指针:直接修改数据
mov dword ptr[ebp - 4], 20h;
} int b = i;
printf("\ni=%d", b); getchar();
} //01.Volatile强化:
// 主要解决强制读取内存的动作
//02.Volatile原理:寄存器-内存
// 1.寄存器读取i的值,然后赋值给a,b
// 2.当检测到i没有被修改的时候,读取寄存器中的i值
// 3.写入到a,b当中-->于是就缺少了读取内存的一次
// 4.只是读取了一次内存当中的i值
//03.数据被意外改变的情况之下经常使用Volatile
// 数据意外改变-->编译器优化-->不读取内存[失误]

程序片段(12):Queue.h+Queue.c+数组顺序队列.c

内容概要:01.数组顺序队列

///Queue.h
#pragma once #define DT int
#define EN 100 typedef struct queue
{
int head;
int tail;
DT arr[EN];
} Queue; void initQueue(Queue * pQueue); int queueIsFull(Queue * pQueue); void enQueue(Queue * pQueue, DT data); int queueIsEmpty(Queue * pQueue); void showQueue(Queue * pQueue); DT queuGetHead(Queue * pQueue); void deQueue(Queue * pQueue);
///Queue.c
#include "Queue.h"
#include <stdlib.h>
#include <memory.h> void initQueue(Queue * pQueue)
{
if (NULL == pQueue)
abort();
memset((*pQueue).arr, 0, EN * sizeof(DT));
(*pQueue).tail = (*pQueue).head = 0;
} int queueIsFull(Queue * pQueue)
{
if (NULL == pQueue)
abort();
if (EN == (*pQueue).tail)
return 1;
return 0;
} void enQueue(Queue * pQueue, DT data)
{
if (NULL == pQueue)
abort();
if (queueIsFull(pQueue))
return;
(*pQueue).arr[(*pQueue).tail] = data;
++(*pQueue).tail;
} int queueIsEmpty(Queue * pQueue)
{
if (NULL == pQueue)
abort();
if ((*pQueue).head == (*pQueue).tail)
return 1;
return 0;
} void showQueue(Queue * pQueue)
{
if (NULL == pQueue)
abort();
if (queueIsEmpty(pQueue))
return;
for (int i = 0; i < (*pQueue).tail; ++i)
{
printf("%3d", (*pQueue).arr[i]);
}
printf("\n");
} DT queueGetHead(Queue * pQueue)
{
if (NULL == pQueue)
abort();
if (queueIsEmpty(pQueue))
return;
return (*pQueue).arr[0];
} //01.几种特殊数据结构的实现方式:
// 1.栈结构:
// 数组栈:tail-=1(无所谓正向和反向)
// 链表栈:
// 正向:尾部增加,尾部减少
// 反向:头部增加,头部减少
// 2.队列结构:
// 数组队列:正反向的效率一致
// 链表队列:
// 正向:尾部增加,头部减少
// 反向:头部增加,尾部减少
//注:数组队列,存在明显缺点,需要进行内存移动!
// 队列的损耗,移动费时费力!
//注:解决数组移动移动费时费力的方案:
// 改造成环数组形队列+改造成链表队列
void deQueue(Queue * pQueue)
{
if (NULL == pQueue)
abort();
if (queueIsEmpty(pQueue))
return;
for (int i = 0; i < (*pQueue).tail - 1; ++i)
{
(*pQueue).arr[i] = (*pQueue).arr[i + 1];
}
--(*pQueue).tail;
}
///数组顺序队列.c
#include "Queue.h"
#include <stdio.h>
#include <stdlib.h> int main01(void)
{
Queue queue;
initQueue(&queue);
for (int i = 0; i < 10; ++i)
{
enQueue(&queue, i);
}
showQueue(&queue);
while (!queueIsEmpty(&queue))
{
printf("出队的数据是%3d \n", queueGetHead(&queue));
deQueue(&queue);
showQueue(&queue);
} system("pause");
} //01.顺序队列:逻辑编程
// 工厂模式+(生产者-消费者)模式+请求响应模式
//02.生产者与消费者:
// 1.生产线程(生产者)
// 2.消费线程(消费者)
// 3.库存情况:库存越少越好,但是不能断掉供应链
// 队列关系:生产者生产,消费者消费
// 顺序关系:先进先出特点(存在顺序)
// 原理:队列&多线程--请求|响应模式
//03.三种队列的实现:
// 1.数组顺序队列(尾部插入,头部取出)
// 2.数组环形顺序队列(尾部插入,头部取出)
// 2.链表反向队列(头部插入,尾部取出)
// 队列实现:基础之上实现
// (生产者&消费者)模式
// (发送消息&接收消息)的模式
// (请求&响应)模式
//04.数组顺序队列-->数组环形顺序队列
// 单链表-->双链表:单独的结构-->追求快一点儿,从简
//05.环形队列原理:
// 1.吃东西-->拉东西
// 2.吃:前面+,拉:往前走
// 3.吃的太多,重合情况(特殊情况)
//06.环形队列解释:
// 1.头尾重合,没有数据,添加一个数据之后,头不变,尾向后移一个结构体单位
// 2.顺序队列的缺点:删除的时候移动很累(数组环形队列可以解决这个问题)
//07.顺序队列解释:
// 1.头部必须固定
// 2.移动费时费力
//08.队列移动问题的改造:
// 1.链表结构
// 2.环形队列

程序片段(13):CircleQueue.h+CircleQueue.c+数组正向环形队列.c

内容概要:02.数组环形顺序队列

///CircleQueue.h
#pragma once #define DT int
#define EN 0 typedef struct circleQueue
{
int head;
int tail;
DT arr[EN];
} CircleQueue; void initCircleQueue(CircleQueue * pCircleQueue); int circleQueueIsFull(CircleQueue * pCircleQueue); void enCircleQueue(CircleQueue * pCircleQueue, DT data); int circleQueueIsEmpty(CircleQueue * pCircleQueue); void showCircleQueue(CircleQueue * pCircleQueue); DT circleQueueGetHead(CircleQueue * pCircleQueue); void deCircleQueue(CircleQueue * pCircleQueue);
///CircleQueue.c
#include "CircleQueue.h"
#include <stdlib.h>
#include <memory.h> void initCircleQueue(CircleQueue * pCircleQueue)
{
if (NULL == pCircleQueue)
abort();
memset((*pCircleQueue).arr, 0, EN * sizeof(DT));
(*pCircleQueue).tail = (*pCircleQueue).head = 0;
} //01.如何判断环形队列是否装满元素?
// 1.这儿有三种特殊情况需要考虑:
// 头部+中部+尾部
// 2.最终可归结为两种环形队列满元素的情况:
// 头部+中部(尾部和头部合并)
// 3.归纳总结:
// 头尾+循环情况
int circleQueueIsFull(CircleQueue * pCircleQueue)
{
if (NULL == pCircleQueue)
abort();
if ((*pCircleQueue).head == ((*pCircleQueue).tail + 1) % EN)
{
return 1;
}
return 0;
} void enCircleQueue(CircleQueue * pCircleQueue, DT data)
{
if (NULL == pCircleQueue)
abort();
if (circleQueueIsFull(pCircleQueue))
return;
(*pCircleQueue).arr[(*pCircleQueue).tail] = data;
(*pCircleQueue).tail = ((*pCircleQueue).tail + 1) % EN;
} int circleQueueIsEmpty(CircleQueue * pCircleQueue)
{
if (NULL == pCircleQueue)
abort();
if ((*pCircleQueue).head == (*pCircleQueue).tail)
return 1;
return 0;
}
///数组正向环形队列.c
//01.数组顺序环形队列的思想:
// 1.就是把数组当成闭合顺序环形队列(数组-->抽象-->环形队列)
// 2.思想演示:
// (1).原型:1 2 3 4 5 6 7 8 9 10
// rear front
// (2).抽离:8 9 10 1 2
// 原理:普通数组抽象为顺序环形队列
// 1).front-->rear:两个指针轮询移动
// 2).防止front和rear:都走到头的情况
// 3).节约移动情况(环形队列的优点)
//02.环形队列实现:
// 数组法+链表法
// 顺序法+逆序法
//03.环形队列的应用场景:
// 操作系统对线程的管理这块儿
//04.环形队列的两种情况:
// 头尾情况+中部情况
//05.环形队列:情况分析
// 头尾+中部最终利用一个表达式进行表示
//06.环形链表:
// 1.rear说明了元素的个数
// front=0&rear=5的情况
// 2.rear重合情况二
// 3.一般情况之下,要是想实现环形队列,数组或者链表都
// 需要空出一个位置,防止front&rear重合
//07.环形链表规则指定:
// 1.为空:避免重合和满了的情况一致
// 2.rear+1%5的特点-->代表存储继续前进
// 3.满的情况综合:
// (rear+1)%5==front说明重合装满

程序片段(15):CircleQueue.h+CircleQueue.h+数组正向环形队列.c

内容概要:01.数组正向环形队列

///CircleQueue.h
#pragma once #define DT int
#define EN 10 //01.数组正向环形队列:
// 优点:出队一个元素,无需进行队列数组元素的整体移动
// 特点:如果模拟数组的长度为N
// 普通队列:需要使用到N个元素
// 环形队列:需要使用到N-1个元素
//注:留出一个空位是为了区分队列重合情况和队列满载情况
// 普通重合情况:就是空队列
// 特殊重合情况:就是满队列
typedef struct circleQueue
{
DT arr[EN];
int head;
int tail;
}CircleQueue; void initCircleQueue(CircleQueue * pCircleQueue); int circleQueueIsFull(CircleQueue * pCircleQueue); void enCircleQueue(CircleQueue * pCircleQueue, DT data); int circleQueueIsEmpty(CircleQueue * pCircleQueue); void showCircleQueue(CircleQueue * pCircleQueue); DT circleQueueGetHead(CircleQueue * pCircleQueue); void deCircleQueue(CircleQueue * pCircleQueue);
///CircleQueue.c
#include "CircleQueue.h"
#include <stdlib.h>
#include <memory.h>
#include <stdio.h> void initCircleQueue(CircleQueue * pCircleQueue)
{
if (NULL == pCircleQueue)
abort();
memset((*pCircleQueue).arr, 0, EN * sizeof(DT));
(*pCircleQueue).tail = (*pCircleQueue).head = 0;
} int circleQueueIsFull(CircleQueue * pCircleQueue)
{
if (NULL == pCircleQueue)
abort();
if ((*pCircleQueue).head == ((*pCircleQueue).tail + 1) % EN)
return 1;
return 0;
} //01.空位主要的作用:
// 1.为了缓冲末尾位置可以进行循环填充数据!
// 2.为了可以准确区分环形队列的两种情况:
// 空队列+满队列
//注:还可以确定最后一个入队的元素到底应当放置于何处!
void enCircleQueue(CircleQueue * pCircleQueue, DT data)
{
if (NULL == pCircleQueue)
abort();
if (circleQueueIsFull(pCircleQueue))
return;
(*pCircleQueue).arr[(*pCircleQueue).tail] = data;
(*pCircleQueue).tail = ((*pCircleQueue).tail + 1) % EN;
} int circleQueueIsEmpty(CircleQueue * pCircleQueue)
{
if (NULL == pCircleQueue)
abort();
if ((*pCircleQueue).head == (*pCircleQueue).tail)
return 1;
return 0;
} void showCircleQueue(CircleQueue * pCircleQueue)
{
if (NULL == pCircleQueue)
abort();
if (circleQueueIsEmpty(pCircleQueue))
return;
//环形队列:元素不确定+起点不确定(无法确定循环次数)
int i = (*pCircleQueue).head;
int count = 0;
do
{
printf("%3d", (*pCircleQueue).arr[(i++) % EN]);
if (9 == ++count)
break;
} while ((((*pCircleQueue).tail + 1) % EN != i % EN) && (i %EN < (*pCircleQueue).tail));
printf("\n");
} DT circleQueueGetHead(CircleQueue * pCircleQueue)
{
if (NULL == pCircleQueue)
abort();
if (circleQueueIsEmpty(pCircleQueue))
return -1;
return (*pCircleQueue).arr[(*pCircleQueue).head];
} void deCircleQueue(CircleQueue * pCircleQueue)
{
if (NULL == pCircleQueue)
abort();
if (circleQueueIsEmpty(pCircleQueue))
return;
(*pCircleQueue).head = ((*pCircleQueue).head + 1) % EN;
}
///数组正向环形队列.c
#include "CircleQueue.h"
#include <stdio.h>
#include <stdlib.h> int main01(void)
{
CircleQueue circleQueue;
initCircleQueue(&circleQueue);
for (int i = 0; i < 9; ++i)
{
enCircleQueue(&circleQueue, i + 1);
showCircleQueue(&circleQueue);
}
while (!circleQueueIsEmpty(&circleQueue))
{
printf("数组正向环形队列出队:%3d \n", circleQueueGetHead(&circleQueue));
deCircleQueue(&circleQueue);
showCircleQueue(&circleQueue);
} system("pause");
}

程序片段(16):Queue.h+Queue.c+数组正向环形队列.c

内容概要:02.数组正向环形队列(标准版)

///Queue.h
#pragma once #define DT int
#define EN 10 //01.采用数组模拟队列的两种特点:
// 1.假设待用于模拟的数组共有N个元素
// 2.两种目标队列模型:
// 普通队列:数组正向队列,使用N个元素
// 环形队列:数组正向环形队列,使用N-1个元素
//注:环形队列,删除一个元素便无需移动
typedef struct queue
{
DT arr[EN];
int head;
int tail;
}Queue; void initQueue(Queue * pQueue); int queueIsFull(Queue * pQueue); void enQueue(Queue * pQueue, DT data); int queueIsEmpty(Queue * pQueue); void showQueue(Queue * pQueue); DT queueGetHead(Queue * pQueue); void deQueue(Queue * pQueue);
///Queue.c
#include "Queue.h"
#include <stdlib.h>
#include <memory.h>
#include <stdio.h> void initQueue(Queue * pQueue)
{
if (NULL == pQueue)
abort();
memset((*pQueue).arr, 0, EN * sizeof(DT));
(*pQueue).tail = (*pQueue).head = 0;
} //01.区分:数组正向环形队列的两种情况
// 1.空队列:起始位置=终止位置
// 2.满队列:起始位置=(终止位置+1)%EN;
//注:关于环形队列的面试填空问题
// 1.预留一个空数组元素用作这两种情况的区分
// 空队列和满队列的准确区分
// 2.使得环形队列的循环利用情况得到维持
// 能够循环利用到环形队列当中的每个元素位置
// 3.极端情况分析:
// (1).头尾:head<tail
// (2).中间:head>tail
// (3).相同:head=tail
int queueIsFull(Queue * pQueue)
{
if (NULL == pQueue)
abort();
if ((*pQueue).head == ((*pQueue).tail + 1) % EN)
{
return 1;
}
return 0;
} //02.数组正向环形队列的入队比数组正向队列麻烦多了:
// 1.特点就是:始终在模拟正向环形队列的数组当中空余一个元素位置
// 用作区分空队列和满队列以及维持环形队列的循环状况
// 2.走环形的特点!充分利用取余运算符的特点
//注:取余运算符能够杜绝两种特殊情况:
// 起点刚好冲数组首位置开始的情况
// 起点不是位于数组首位置的情况
// 特:在这两种情况之下都能够维持空余一个元素位置的特点
//最后一个位置无论何种情况都不会被使用到!
void enQueue(Queue * pQueue, DT data)
{
if (NULL == pQueue)
abort();
if (queueIsFull(pQueue))
return;
(*pQueue).arr[(*pQueue).tail] = data;
(*pQueue).tail = ((*pQueue).tail + 1) % EN;//就是为了一定要空余最后一个位置
} //03.空队列的两种情况:
// 重合点为:(起点位置or终点位置)
// 重合点为:模拟数组的任何位置!
//注:实质上就是两点重合!
int queueIsEmpty(Queue * pQueue)
{
if (NULL == pQueue)
abort();
if ((*pQueue).head == (*pQueue).tail)
return 1;
return 0;
} void showQueue(Queue * pQueue)
{
if (NULL == pQueue)
abort();
for (int i = (*pQueue).head; i % EN < (*pQueue).tail ; ++i)
{
printf("%3d", (*pQueue).arr[i]);
}
printf("\n");
} DT queueGetHead(Queue * pQueue)
{
if (NULL == pQueue)
abort();
if (queueIsEmpty(pQueue))
return;
return (*pQueue).arr[(*pQueue).head];
} void deQueue(Queue * pQueue)
{
if (NULL == pQueue)
abort();
if (queueIsEmpty(pQueue))
return;
(*pQueue).head = ((*pQueue).head + 1) % EN;
}
///数组正向环形队列.c
#include "Queue.h"
#include <stdio.h>
#include <stdlib.h> int main02(void)
{
//for (int i = 0;;++i)
//{
// printf("%2d", i %10);
//} Queue queue;
initQueue(&queue);
for (int i = 0; i < EN - 1; ++i)
{
enQueue(&queue, i + 1);
showQueue(&queue);
}
while (!queueIsEmpty(&queue))
{
printf("%3d", queueGetHead(&queue));
deQueue(&queue);
} system("pause");
} //01.环形队列:
// 1.最后一个坑用于表示模拟结束:标识结束
// 标识结束+区分空队列和满队列+可循环利用
// 2.环形队列原理深究:
// 环形队列的优先级问题-->顺序队列同样有
//注:优先队列
//02.环形队列的应用:
// 1.高效应用
// 2.操作系统在一段时间之内只能运行一个线程
//03.操作系统的特点:
// 1.我一段时间限定内只能运行一段儿程序,所以操作系统
// 为每一条线程分配相应的时间片,然后获取时间片之后
// 就开始执行-->操作系统1秒钟有1000次夺回控制权
// 2.Windows属于抢占式操作系统
// 操作系统时时刻刻夺回控制权,在重新进行分配
// 3.冻结状态与解冻状态的体现
//04.处理队列的时候需要将数据更替为HANDLE类型
//05.使用数组构建环形队列比使用链表构建环形队列简单多了
//06.数组正向环形队列相比数组正向队列的好处:
// 删除一个元素之后不需要进行移动,消耗效率

程序片段(17):CircleQueue.h+CircleQueue.c+数组正向环形队列.c

内容概要:01.数组正向环形队列

///CircleQueue.h
#pragma once #define DT int
#define EN 10 //01.数组模拟队列:
// 普通队列:使用N个数组元素
// 环形队列:使用N-1个数组元素
typedef struct circleQueue
{
DT arr[EN];
int head;
int tail;
}CircleQueue; void initCircleQueue(CircleQueue * pCircleQueue); int circleQueueIsFull(CircleQueue * pCircleQueue); void enCircleQueue(CircleQueue * pCircleQueue, DT data); int circleQueueIsEmpty(CircleQueue * pCircleQueue); void showCircleQueue(CircleQueue * pCircleQueue); DT circleQueueGetHead(CircleQueue * pCircleQueue); void deCircleQueue(CircleQueue * pCircleQueue);
///CircleQueue.c
#include "CircleQueue.h"
#include <stdlib.h>
#include <memory.h>
#include <stdio.h> void initCircleQueue(CircleQueue * pCircleQueue)
{
if (NULL == pCircleQueue)
abort();
memset((*pCircleQueue).arr, 0, EN * sizeof(DT));
(*pCircleQueue).tail = (*pCircleQueue).head = 0;
} int circleQueueIsFull(CircleQueue * pCircleQueue)
{
if (NULL == pCircleQueue)
abort();
if ((*pCircleQueue).head == ((*pCircleQueue).tail + 1) % EN)//满队列
return 1;
return 0;
} void enCircleQueue(CircleQueue * pCircleQueue, DT data)
{
if (NULL == pCircleQueue)
abort();
if (circleQueueIsFull(pCircleQueue))
return;
(*pCircleQueue).arr[(*pCircleQueue).tail] = data;//当前填充位置
(*pCircleQueue).tail = ((*pCircleQueue).tail + 1) % EN;//下个填充位置+保证连续存储
} int circleQueueIsEmpty(CircleQueue * pCircleQueue)
{
if (NULL == pCircleQueue)
abort();
if ((*pCircleQueue).head == (*pCircleQueue).tail)//空队列
return 1;
return 0;
} void showCircleQueue(CircleQueue * pCircleQueue)
{
if (NULL == pCircleQueue)
abort();
if (circleQueueIsEmpty(pCircleQueue))
return;
for (int i = (*pCircleQueue).head; i%EN < (*pCircleQueue).tail; ++i)//i<=>i%EN:这里是环形队列没有出现特殊情况的特点!
{//数组正向环形队列:1.不确定数组环形队列元素个数+2.不确定环形队列的起始元素和终止元素位置(因此打印无法控制)
printf("%3d", (*pCircleQueue).arr[i]);
}
printf("\n");
} DT circleQueueGetHead(CircleQueue * pCircleQueue)
{
if (NULL == pCircleQueue)
abort();
if (circleQueueIsEmpty(pCircleQueue))
return -1;
return (*pCircleQueue).arr[(*pCircleQueue).head];
} void deCircleQueue(CircleQueue * pCircleQueue)
{
if (NULL == pCircleQueue)
abort();
if (circleQueueIsEmpty(pCircleQueue))
return;
(*pCircleQueue).head = ((*pCircleQueue).head + 1) % EN;
}
///数组正向环形队列.c
#include "CircleQueue.h"
#include <stdio.h>
#include <stdlib.h>
#include <Windows.h> int main01(void)
{
CircleQueue circleQueue = { 0 };
initCircleQueue(&circleQueue);
for (int i = 0; i < 9; ++i)
{
enCircleQueue(&circleQueue, i + 1);
showCircleQueue(&circleQueue);
}
while (!circleQueueIsEmpty(&circleQueue))
{
printf("%3d \n", circleQueueGetHead(&circleQueue));
deCircleQueue(&circleQueue);
showCircleQueue(&circleQueue);
} system("pause");
} CircleQueue circleQueue = { 0 }; DWORD WINAPI producer(void * p)
{
printf("生产者第01次执行生产任务! \n");
int data = 0;
while (!circleQueueIsFull(&circleQueue))
{//生产者:一次性补充满库存黁量
enCircleQueue(&circleQueue, ++data);
printf("生产者生产了%3d! \n", data);
}
Sleep(1000);
HANDLE event1 = OpenEvent(EVENT_ALL_ACCESS, TRUE, L"producer");
SetEvent(event1); int i = 1;
while (++i)
{
HANDLE event2 = OpenEvent(EVENT_ALL_ACCESS, TRUE, L"consumer");
WaitForSingleObject(event2, INFINITE);
printf("生产者第%02d次执行生产任务! \n", i);
while (!circleQueueIsFull(&circleQueue))
{
enCircleQueue(&circleQueue, ++data);
printf("生产者生产了%3d! \n", data);
}
Sleep(1000);
SetEvent(event1);
} return 0;
} DWORD WINAPI consumer(void * p)
{
int i = 0;
while (++i)
{
HANDLE event1 = OpenEvent(EVENT_ALL_ACCESS, TRUE, L"producer");
WaitForSingleObject(event1, INFINITE);
printf("消费者第%02d次执行消费任务! \n", i);
int num = 9;
for (int j = 0; j < num; ++j)
{
if (!circleQueueIsEmpty(&circleQueue))
{
printf("消费者消费了%3d! \n", circleQueueGetHead(&circleQueue));
deCircleQueue(&circleQueue);
}
}
Sleep(1000);
HANDLE event2 = OpenEvent(EVENT_ALL_ACCESS, TRUE, L"consumer");
SetEvent(event2);
}
return 0;
} int main02(void)
{
HANDLE event1 = CreateEvent(NULL, FALSE, FALSE, L"producer");
HANDLE event2 = CreateEvent(NULL, FALSE, FALSE, L"consumer"); HANDLE threadArr[2] = { 0 };
threadArr[0] = CreateThread(NULL, 0, producer, NULL, 0, NULL);
threadArr[1] = CreateThread(NULL, 0, consumer, NULL, 0, NULL);
//WaitForSingleObject(producer, INFINITE);//可以直接等待单个线程任务执行结束以后!
WaitForMultipleObjects(2, threadArr, TRUE, INFINITE); CloseHandle(event1);
system("pause");
} //01.消费者不管买走多少,都需要将存储结构塞满
// 紧缺产品:针对于畅销产品的库存解决方案
// 随时保持库存充足
// 停滞产品:针对于停滞产品的库存解决方案
// 在满足市场供需的情况之下,库存越少越好
//02.Scanf不是一个线程安全的函数
// 1.所以需要手动进行安全检查
// 2.它也是系统出现漏洞的原因之一
//03.防止进栈压栈冲突:延迟
// 互锁:不要让生产者边生产而消费者边消费
// 解决:生产者完成之后消费者进行消费
//注:以上情况不符合现实情况,现实情况之下需要解决多线程异步并发访问冲突问题
//04.生产者&消费者:
// 1.环形队列的仓库,保证这个库存-->生产的是紧缺产品(随时满足库存量)
// 2.库存一定需要填满(针对于畅销紧缺产品)
//05.工厂设计模式:
// 1.同时生产多个产品-->产品&线程开辟-->平衡调度线程
// 工厂:多线程
// 2.前台卖货:平衡调度
// 库存控制,畅销与非畅销
// 3.消费者消费:千变万化
//注:区分(生产者与消费者)和(工厂)两种设计模式的区别:
// 生产者与消费者:单产品
// 工厂:多产品
//06.链式队列(无线)&栈(有限)
// 服务器几十万几百万的多线程操作
//07.内存数据库:
// 1.所有数据都载入内存-->发出请求
// 2.文件载入内存
// 3.消费者提出(需求),生产者进行(生产)
// 4.线程不断的进行加载
// 5.防止多线程并发访问
// 6.迁移到CGI: 手机查询
// 7.多线程与队列问题-->稳定与不稳定

程序片段(18):Queue.h+Queue.c+Main.c

内容概要:02.链表反向队列

///Queue.h
#pragma once #define DT int typedef struct node
{
DT data;
struct node * pNext;
}Node; void initQueue(Node ** ppQueue); void enQueue(Node ** ppQueue, DT data); void showQueue(Node * pQueue); DT queueGetHead(Node * pQueue); void deQueue(Node ** ppQueue);
///Queue.c
#include "Queue.h"
#include <stdlib.h>
#include <stdio.h> void initQueue(Node ** ppQueue)
{
if (NULL == ppQueue)
abort();
*ppQueue = NULL;
} void enQueue(Node ** ppQueue, DT data)
{
if (NULL == ppQueue)//无队列
abort();
Node * pNew = (Node *)malloc(sizeof(Node));
pNew->data = data;
pNew->pNext = NULL;
if (NULL == *ppQueue)//空队列
{
*ppQueue = pNew;
return;
}
pNew->pNext = *ppQueue;
*ppQueue = pNew;
} void showQueue(Node * pQueue)
{
if (NULL == pQueue)
return;
for (Node * pTmp = pQueue; NULL != pTmp; pTmp = pTmp->pNext)
{
printf("%3d", pTmp->data);
}
printf("\n");
} DT queueGetHead(Node * pQueue)
{
if (NULL == pQueue)
abort();
Node * pTmp = pQueue;
while (NULL != pTmp->pNext)
{
pTmp = pTmp->pNext;
}
return pTmp->data;
} void deQueue(Node ** ppQueue)
{
if (NULL == ppQueue)
abort();
if (NULL == *ppQueue)
return;
if (NULL == (*ppQueue)->pNext)
{
free(*ppQueue);
*ppQueue = NULL;
return;
}
Node * pTmp = *ppQueue;
while (NULL != pTmp->pNext->pNext)
{
pTmp = pTmp->pNext;
}
free(pTmp->pNext);
pTmp->pNext = NULL;
}
///Main.c
#include "Queue.h"
#include <stdlib.h>
#include <Windows.h> //01.链表反向队列:
// 全局变量:用作跨线程通信变量
Node * pQueue = NULL; //02.生产者消费者模式之生产者:
// 1.时时刻刻盯着链表反向队列结构
// 2.区分:畅销产品与非畅销产品
//注:避免过度消耗资源的情况发生
DWORD WINAPI producer(void * p)
{//非畅销产品
int i = 0;
while (++i)
{
if (NULL == pQueue)
{
enQueue(&pQueue, i);
printf("生产者生产了产品%3d! \n", i);
}
Sleep(1000);
}
return 0;
} DWORD WINAPI consumer(void * p)
{
int i = 0;
while (++i)
{
MessageBoxA(0, "wait", "consumer", 0);
printf("消费者消费了%3d! \n", queueGetHead(pQueue));
deQueue(&pQueue);
}
return 0;
} int main01(void)
{
HANDLE threadArr[2] = { 0 };
threadArr[0] = CreateThread(NULL, 0, producer, NULL, 0, NULL);
threadArr[1] = CreateThread(NULL, 0, consumer, NULL, 0, NULL);
WaitForMultipleObjects(2, threadArr, TRUE, INFINITE); system("pause");
} //01.生产者与消费者(设计模式):
// 1.链表反向队列:作为流水线
// 数组(正向&反向)队列&数组(正向&反向)环形队列&链表(正向&反向)队列
// 2.线程结构:生产者&消费者
// 3.流程原理:
// (1).当流水线为空的时候,生产者生产
// (2).生产者:非畅销&畅销(视具体情况而定)
// (3).消费者:手动控制,可以获取任意个数
// 设计模式:看不明白的主要原因是因为多线程
// 单线程没有意义,多线程才有意义
//02.生产者&消费者:
// 1.生产"紧缺"产品&生产"非紧缺"产品
// 2.生产者&消费者所做事情:
// (1),生产者时时刻刻检测数据结构是否已经填充满了
// 没有满需要插入数据-->链式队列:锁定数目就行了(防止无限仓库产生)
// 理论上都不推荐使用链式队列:因为过渡消耗资源
// -->链式栈不存在满的情况:可以进行无限拓展
// (2).用于软件开发的两种情况:
// 1).生产&消费分开做
// 2).工厂模式更加复杂(不同类型的生产者与消费者模式)
//03.理解生产者与消费者
// 1.生产者需要保证至少有一个
// 2.消费者的消费情况是随机消费的
// 3.消费者需要配合生产着
// 一个入队,一个出队[消费者的消费是个不确定的数据]
// 4.线程通信中间使用最多的是什么?
// 事件&互斥量&信号量

程序片段(19):Queue.h+Queue.c+01.Event通信(生产者消费者).cpp+02.Semaphore通信(生产者消费者).c

内容概要:03.生产者与消费者模式

///Queue.h
#pragma once #define DT int typedef struct node
{
DT data;
struct node * pNext;
}Node; void initQueue(Node ** ppQueue); void enQueue(Node ** ppQueue, DT data); void showQueue(Node * pQueue); DT queueGetHead(Node * pQueue); void deQueue(Node ** ppQueue);
///Queue.c
#include "Queue.h"
#include <stdlib.h>
#include <stdio.h> void initQueue(Node ** ppQueue)
{
if (NULL == ppQueue)
abort();
*ppQueue = NULL;
} void enQueue(Node ** ppQueue, DT data)
{
if (NULL == ppQueue)//无队列
abort();
Node * pNew = (Node *)malloc(sizeof(Node));
pNew->data = data;
pNew->pNext = NULL;
if (NULL == *ppQueue)//空队列
{
*ppQueue = pNew;
return;
}
pNew->pNext = *ppQueue;
*ppQueue = pNew;
} void showQueue(Node * pQueue)
{
if (NULL == pQueue)
return;
for (Node * pTmp = pQueue; NULL != pTmp; pTmp = pTmp->pNext)
{
printf("%3d", pTmp->data);
}
printf("\n");
} DT queueGetHead(Node * pQueue)
{
if (NULL == pQueue)
abort();
Node * pTmp = pQueue;
while (NULL != pTmp->pNext)
{
pTmp = pTmp->pNext;
}
return pTmp->data;
} void deQueue(Node ** ppQueue)
{
if (NULL == ppQueue)
abort();
if (NULL == *ppQueue)
return;
if (NULL == (*ppQueue)->pNext)
{
free(*ppQueue);
*ppQueue = NULL;
return;
}
Node * pTmp = *ppQueue;
while (NULL != pTmp->pNext->pNext)
{
pTmp = pTmp->pNext;
}
free(pTmp->pNext);
pTmp->pNext = NULL;
}
///01.Event通信(生产者消费者).cpp
#include "Queue.h"
#include <stdio.h>
#include <stdlib.h>
#include <Windows.h> Node * pQueue = NULL; DWORD WINAPI producer(void * p)
{
enQueue(&pQueue, 1);
int i = 1;
while (++i)
{
HANDLE event1 = OpenEvent(EVENT_ALL_ACCESS, TRUE, L"consumer");
WaitForSingleObject(event1, INFINITE);
printf("生产者生产了%3d! \n", i);
enQueue(&pQueue, i);
}
return 0;
} DWORD WINAPI consumer(void * p)
{
int i = 0;
while (++i)
{
MessageBoxA(0, "wait", "wait", 0);
printf("消费者消费了%3d! \n", queueGetHead(pQueue));
deQueue(&pQueue);
HANDLE event1 = OpenEvent(EVENT_ALL_ACCESS, TRUE, L"consumer");
SetEvent(event1);
}
return 0;
} int main01(void)
{
HANDLE event1 = CreateEvent(NULL, FALSE, FALSE, L"consumer"); HANDLE threadArr[2] = { 0 };
threadArr[0] = CreateThread(NULL, 0, producer, NULL, 0, NULL);
threadArr[1] = CreateThread(NULL, 0, consumer, NULL, 0, NULL);
WaitForMultipleObjects(2, threadArr, TRUE, INFINITE); CloseHandle(event1);
system("pause");
return 1;
} //01.消费完成之后设置事件的触发
//02.每秒钟进行检测,浪费资源
//03.事件的关键步骤:
// CloseHandle(event);
//04.在一个线程里面不需要死循环:
// 因为它在这儿i不断的进行自增,增加的次数不确定
//05.事件通信&信号量通信
///02.Semaphore通信(生产者消费者).c
#include "Queue.h"
#include <stdio.h>
#include <stdlib.h>
#include <Windows.h> Node * pQueue = NULL; DWORD WINAPI producer(void * p)
{
HANDLE sema = OpenSemaphoreA(SEMAPHORE_ALL_ACCESS, TRUE, "consumer");
enQueue(&pQueue, 1);
int i = 1;
while (++i)
{
WaitForSingleObject(sema, INFINITE);
printf("生产者生产了%3d! \n", i);
enQueue(&pQueue, i);
}
return 0;
} DWORD WINAPI consumer(void * p)
{
HANDLE sema = OpenSemaphoreA(SEMAPHORE_ALL_ACCESS, TRUE, "consumer");
int i = 0;
while (++i)
{
MessageBoxA(0, "wait", "consumer", 0);
printf("消费者消费了%3d! \n", queueGetHead(pQueue));
deQueue(&pQueue);
ReleaseSemaphore(sema, 1, NULL);
}
return 0;
} int main02(void)
{
HANDLE sema = CreateSemaphoreA(NULL, 0, 1, "consumer"); HANDLE threadArr[2] = { 0 };
threadArr[0] = CreateThread(NULL, 0, producer, NULL, 0, NULL);
threadArr[1] = CreateThread(NULL, 0, consumer, NULL, 0, NULL);
WaitForMultipleObjects(2, threadArr, TRUE, INFINITE); CloseHandle(sema);
system("pause");
} //01.信号量解决生产者与消费者问题:
// C++称之为工厂设计模式
//02.事件-->互斥量解决线程通信问题:
// 事件-->信号量问题分析
//03.设计模式结合多线程比较好理解
// 两个变量之间的双方通信规则

20160227.CCPP体系详解(0037天)的更多相关文章

  1. 20160129.CCPP体系详解(0008天)

    程序片段(01):函数.c+call.c+测试.cpp 内容概要:函数 ///函数.c #include <stdio.h> #include <stdlib.h> //01. ...

  2. 20160226.CCPP体系详解(0036天)

    程序片段(01):01.多线程.c+02.多线程操作.c 内容概要:多线程 ///01.多线程.c #include <stdio.h> #include <stdlib.h> ...

  3. 20160208.CCPP体系详解(0018天)

    程序片段(01):main.c 内容概要:PointWithOutInit #include <stdio.h> #include <stdlib.h> //01.野指针详解: ...

  4. 20160206.CCPP体系详解(0016天)

    代码片段(01):.指针.c+02.间接赋值.c 内容概要:内存 ///01.指针 #include <stdio.h> #include <stdlib.h> //01.取地 ...

  5. 20160205.CCPP体系详解(0015天)

    程序片段(01):01.杨辉三角.c 内容概要:杨辉三角 #include <stdio.h> #include <stdlib.h> #define N 10 //01.杨辉 ...

  6. 20160204.CCPP体系详解(0014天)

    程序片段(01):define.h+data.h&data.c+control.h&control.c+view.h&view.c+AI.h&AI.c+main.c 内 ...

  7. 20160203.CCPP体系详解(0013天)

    程序片段(01):数组.c+02.数组初始化语法.c 内容概要:数组 ///01.数组.c #include <stdio.h> #include <stdlib.h> //0 ...

  8. 20160128.CCPP体系详解(0007天)

    以下内容有所摘取,进行了某些整理和补充 论浮点数的存储原理:float浮点数与double浮点数的二进制存储原理–>阶码 浮点数转二进制 1.整数int类型和浮点数float类型都是占用4个字节 ...

  9. 20160127.CCPP体系详解(0006天)

    程序片段(01):msg.c 内容概要:线程概念 #include <stdio.h> #include <stdlib.h> #include <Windows.h&g ...

随机推荐

  1. day3 自定义指令详解

    在angular中,Directive,自定义指令的学习,可以更好的理解angular指令的原理,当angular的指令不能满足你的需求的时候,嘿嘿,你就可以来看看这篇文章,自定义自己的指令,可以满足 ...

  2. 微信小程序:模板消息推送提示{“errcode”:41030,”errmsg”:”invalid page hint: [gP1eXXXXXX]”}

    在开发小程序 模板消息定时推送功能时,在开发版测试程序功能运行正常,但提交到线上后提示报错{“errcode”:41030,”errmsg”:”invalid page hint: [gP1eXXXX ...

  3. linux系统命令学习系列8-文件相关操作touch,rm,mv,cat,head,tail命令

    上节内容: 系统和目录管理 Pwd命令 .和..目录 相对路径和绝对路径 作业:进入opt路径,分别使用相对路径方法和绝对路径方法进入到其实任意一个子目录 cd /opt 相对路径 cd rh 绝对路 ...

  4. reportng优化

    本来呢,我是看到报告中没有输出@Test的description 的属性,想优化一下,没想到在找reportng的源码的时候,发现一个大神也优化了reportNG,他优化了下面几个内容: 1).测试结 ...

  5. mysql索引类型和索引方法

    索引类型 mysql索引类型normal,unique,full text的区别是什么? normal:表示普通索引 unique:表示唯一的,不允许重复的索引,如果该字段信息保证不会重复例如身份证号 ...

  6. 洛谷 P3258 [JLOI2014]松鼠的新家(树链剖分)

    题目描述松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在”树“上. 松鼠想邀请小熊维尼前来 ...

  7. C#多线程Thread.Join()的详解

    class TestThread { private static void FirstThreadFun() { ; i < ; i++) { Console.WriteLine(Thread ...

  8. 设置python爬虫IP代理(urllib/requests模块)

    urllib模块设置代理 如果我们频繁用一个IP去爬取同一个网站的内容,很可能会被网站封杀IP.其中一种比较常见的方式就是设置代理IP from urllib import request proxy ...

  9. Hibernate注解开发详解

    *****************关于注解的简单介绍 详细介绍请点击这里注解详细教程 package com.tomowork.pojo; import org.hibernate.annotatio ...

  10. Python基础学习(第一周)

    Python是一门什么语言 编译型和解释型 通俗来讲,编译型就是一次性把所有程序写的代码都转换成机器可以识别的语言(机器语言),即可执行文件.exe: 解释型就是程序每执行到某一条指令,则会有有个称之 ...