bzoj 3275 最小割
给你一堆东西,叫你选一些东西出来,使得价值最大,要求选出的东西集合中的任意a,b满足性质p。
可以考虑:
1、拟阵?
2、二分图?
这道题由于数学硬伤,不知道不存在两条直角边是奇数,斜边是整数的直角三角形。
证明是:
对于奇数a: a*a = 1 mod 4
对于偶数a: a*a = 0 mod 4
所以对于两个奇数a,b: a*a+b*b = 2 mod 4
不存在整数c使得: a*a+b*b = c*c mod 4
/**************************************************************
Problem: 3275
User: idy002
Language: C++
Result: Accepted
Time:3616 ms
Memory:1176 kb
****************************************************************/ #include <cstdio>
#include <cmath>
#include <cstring>
#include <vector>
#define min(a,b) ((a)<(b)?(a):(b))
#define oo 0x3f3f3f3f
#define N 6010
using namespace std; typedef long long dnt;
struct Edge {
int u, v, f;
Edge( int u, int v, int f ):u(u),v(v),f(f){}
};
struct Dinic {
int src, dst;
vector<Edge> edge;
vector<int> g[N];
int dep[N], cur[N], qu[N], bg, ed;
void init( int src, int dst ) {
this->src = src;
this->dst = dst;
}
void adde( int u, int v, int f ) {
g[u].push_back( edge.size() );
edge.push_back( Edge(u,v,f) );
g[v].push_back( edge.size() );
edge.push_back( Edge(v,u,) );
}
bool bfs() {
memset( dep, , sizeof(dep) );
qu[bg=ed=] = src;
dep[src] = ;
while( bg<=ed ) {
int u=qu[bg++];
for( int t=; t<g[u].size(); t++ ) {
Edge &e = edge[g[u][t]];
if( e.f && !dep[e.v] ) {
dep[e.v] = dep[e.u] + ;
qu[++ed] = e.v;
}
}
}
return dep[dst];
}
int dfs( int u, int a ) {
if( u==dst || a== ) return a;
int remain=a, past=, na;
for( int &t=cur[u]; t<g[u].size(); t++ ) {
Edge &e=edge[g[u][t]];
Edge &ve=edge[g[u][t]^];
if( e.f && dep[e.v]==dep[e.u]+ && (na=dfs(e.v,min(remain,e.f))) ) {
remain -= na;
past += na;
e.f -= na;
ve.f += na;
if( !remain ) break;
}
}
return past;
}
int maxflow() {
int rt=;
while( bfs() ) {
memset( cur, , sizeof(cur) );
rt += dfs(src,oo);
}
return rt;
}
}D; int n;
int src, dst;
int aa[N], sum;
int gcd( int a, int b ) {
return b ? gcd(b,a%b) : a;
}
bool ok( int a, int b ) {
if( gcd(a,b)!= ) return false;
dnt cc = (dnt)a*a + (dnt)b*b;
dnt c = (dnt)sqrt(cc);
if( c*c!=cc && (c+)*(c+)!=cc ) return false;
return true;
}
int main() {
scanf( "%d", &n );
src = n+, dst = n+;
D.init( src, dst );
for( int i=; i<=n; i++ ) {
scanf( "%d", aa+i );
sum += aa[i];
if( aa[i]& )
D.adde( src, i, aa[i] );
else
D.adde( i, dst, aa[i] );
}
for( int i=; i<=n; i++ ) {
if( !(aa[i]&) ) continue;
for( int j=; j<=n; j++ ) {
if( aa[j]& ) continue;
if( !ok(aa[i],aa[j]) ) continue;
D.adde( i, j, oo );
}
}
printf( "%d\n", sum-D.maxflow() );
}
bzoj 3275 最小割的更多相关文章
- BZOJ 1412 & 最小割
什么时候ZJ省选再现一次这么良心的题吧... 题意: 在一个染色的格子画分割线,使其不想连,求最少的线段 SOL: 裸裸的最小割.题目要求两种颜色不想连,我们把他分到两个集合,也就是把所有相连的边切断 ...
- BZOJ 1797 最小割
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1797 题意:给出一个有向图,每条边有流量,给出源点汇点s.t.对于每条边,询问:(1)是 ...
- BZOJ 2229 最小割
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2229 题意:给定一个带权无向图.若干询问,每个询问回答有多少点对(s,t)满足s和t的最 ...
- bzoj 1497 最小割模型
我们可以对于消费和盈利的点建立二分图,开始答案为所有的盈利和, 那么源向消费的点连边,流量为消费值,盈利向汇连边,流量为盈利值 中间盈利对应的消费连边,流量为INF,那么我们求这张图的最小割,用 开始 ...
- bzoj 1934 最小割
收获: 1.流量为0的边可以不加入. 2.最小割方案要与决策方案对应. #include <cstdio> #include <cmath> #include <cstr ...
- bzoj 3996 最小割
公式推出来后想了半天没思路,居然A是01矩阵..... 如果一个问题是求最值,并那么尝试先将所有可能收益加起来,然后矛盾部分能否用最小割表达(本题有两个矛盾,第一个是选还是不选,第二个是i,j有一个不 ...
- bzoj 1934最小割
比较显然的最小割的题,增加节点source,sink,对于所有选1的人我们可以(source,i,1),选0的人我们可以(i,sink,1),然后对于好朋友我们可以连接(i,j,1)(j,i,1),然 ...
- bzoj 1497 最小割
思路:最小割好难想啊,根本想不到.. S -> 用户群 = c[ i ] 基站 -> T = p[ i ] 用户群 -> a[ i ] = inf 用户群 -> b[ i ] ...
- BZOJ 1797 最小割(最小割割边唯一性判定)
问题一:是否存在一个最小代价路径切断方案,其中该道路被切断? 问题二:是否对任何一个最小代价路径切断方案,都有该道路被切断? 现在请你回答这两个问题. 最小割唯一性判定 jcvb: 在残余网络上跑ta ...
随机推荐
- Linux查看用户密码修改时间
在/etc/shadow文件里面,第三个字段标识表示密码修改日期:这个是表明上一次修改密码的日期与1970-1-1相距的天数.如果账户自创建后,没有修改过密码,就可以使用这个字段来查找账号创建日期. ...
- 使用UDP和TCP协议的各种应用和应用层协议
IGMP和ICMP是传输层协议
- wordcount在本地运行报错解决:Exception in thread "main" java.lang.UnsatisfiedLinkError:org.apache.hadoop.io.native.NativeID$Windows.access
在windows中的intellij中运行wordcount程序,控制台输出以下报错 在Intellij编辑器中解决办法:本地重新创建NativeIO类,修改一个方法返回值,然后用新建的NativeI ...
- RNN BPTT
双向LSTM
- win10 操作配置备忘
让程序自动启动 如果想要实现应用程序在所有的用户登录系统后都能自动启动,就把该应用程序的快捷方式放到"系统启动文件夹"里: C:\ProgramData\Microsoft\Win ...
- 洛谷P2002消息扩散
传送门啦 这个题就是tarjan强连通分量与入度的例题了. 思路: 利用缩点的思想,先预处理一下所有的强连通分量,然后把每个强连通分量内的所有节点看做一个节点,然后处理一张新图,然后检查每个点的入度, ...
- 使用html+css+js实现日历与定时器,看看今天的日期和今天剩余的时间。
使用html+css+js实现日历与定时器,看看今天的日期和今天剩余的时间. 效果图: 哎,今天就又这么过去了,过的可真快 . 代码如下,复制即可使用: <!DOCTYPE html> & ...
- Delphi与Socket
一.Delphi与Socket计算机网络是由一系列网络通信协议组成的,其中的核心协议是传输层的TCPIP和UDP协议.TCP是面向连接的,通信双方保持一条通路,好比目前的电话线,使用telnet登陆B ...
- 二进制方式部署Kubernetes 1.6.0集群(开启TLS)
本节内容: Kubernetes简介 环境信息 创建TLS加密通信的证书和密钥 下载和配置 kubectl(kubecontrol) 命令行工具 创建 kubeconfig 文件 创建高可用 etcd ...
- Html5和Css3扁平化风格网页
前言 扁平化概念的核心意义 去除冗余.厚重和繁杂的装饰效果.而具体表现在去掉了多余的透视.纹理.渐变以及能做出3D效果的元素,这样可以让“信息”本身重新作为核心被凸显出来.同时在设计元素上,则强调了抽 ...