【BZOJ3609】人人尽说江南好(博弈论)

题面

BZOJ

洛谷

题解

昨天考试的时候,毒瘤出题人出了一个\(noip\)博弈十合一然后他就被阿鲁巴了,因为画面残忍,就不再展开。

这题是他的十合一中的第四问,然而我并不会做,所以自己就大力YY了一下,

首先一定有\([n/m]\)个大小为\(m\)的堆,那么还剩下\(n\%m\)个石子,而它们不受限制,所以一共可以操作\(max(n\%m-1,0)\)次,而前面那么多堆合并的次数也是已知的,所以可以直接判断要合并多少次,然后就知道谁赢了。

正确性并不会证明。

#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int main()
{
int T=read();
while(T--)
{
int n=read(),m=read();
int k=(int)(n/m)*(m-1)%2;n%=m;
if(n>1&&n%2==0)k^=1;
printf("%d\n",k^1);
}
return 0;
}

【BZOJ3609】人人尽说江南好(博弈论)的更多相关文章

  1. [HEOI2014]人人尽说江南好 博弈论

    题面 题面 题解 感觉这题挺神仙的,根据一些奇奇怪怪的证明可以得到: 最后的终止状态一定是\(m, m, m, m, .... n \% m\). 因此我们可以O(1)计算到终止状态所需步数,然后根据 ...

  2. BZOJ3609 Heoi2014 人人尽说江南好【推理+结论】

    BZOJ3609 Heoi2014 人人尽说江南好 Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时 ...

  3. bzoj3609 [Heoi2014]人人尽说江南好 博弈

    [Heoi2014]人人尽说江南好 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 581  Solved: 420[Submit][Status][D ...

  4. BZOJ 3609: [Heoi2014]人人尽说江南好

    3609: [Heoi2014]人人尽说江南好 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 470  Solved: 336[Submit][Sta ...

  5. [HEOI2014] 人人尽说江南好

    [HEOI2014] 人人尽说江南好 题目大意:一个博弈游戏,地上\(n\)堆石子,每堆石子有\(1\)个,每次可以合并任意两个石子堆\(a,b\),要求\(a + b \leq m\),问先手赢还是 ...

  6. bzoj3609 [Heoi2014]人人尽说江南好

    Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏.    在过去,人们是要边玩 ...

  7. [BZOJ3609][Heoi2014]人人尽说江南好 结论题

    Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏.     在过去,人们是要 ...

  8. BZOJ3609 [Heoi2014]人人尽说江南好 【博弈】

    题目链接 BZOJ3609 题解 我们假设最后合成若干个\(m\),和\(n \mod m\),此时合成次数是最多的,也唯一确定胜利者 可以发现,在轮流操作的情况下,胜利者一定可以将终态变为这个状态 ...

  9. bzoj3609【HEOI2014】人人尽说江南好

    题意:http://www.lydsy.com/JudgeOnline/problem.php?id=3609 sol :博弈论  通过打表找规律,发现答案是%m循环的,且当m为偶数时取反  因为我太 ...

随机推荐

  1. 算法工程师进化-SQL

    1 引言 SQL操作往往是程序员必备的技能,对于算法工程师而言,熟练掌握SQL操作则更为重要.本文以<SQL语句执行顺序>作为学习资料,总结SQL的理论部分. 2 SQL查询语句的执行顺序 ...

  2. Java SE练习题——求奇数

    欢迎来到Java SE练习题频道,我是Fishing,今天我带来的练习题是(做题会有不足之处,可评论,说出更好的方法): 通过键盘输入两个整数,计算这两个整数之间的所有奇数之和,并输出计算结果. 看到 ...

  3. GIT问题(一)——push冲突

  4. k8s环境搭建--基于kubeadm方法

    环境 master node: 数量 1, 系统 ubuntu 16.04_amd64 worker node: 数量 1, 系统 ubuntu 16.04_amd64 kubernetes 版本: ...

  5. leetcode第217.题存在重复元素

    1.题目描述 给定一个整数数组,判断是否存在重复元素. 如果任何值在数组中出现至少两次,函数返回 true.如果数组中每个元素都不相同,则返回 false. 2.示例 2.1 输入: [1,2,3,1 ...

  6. CentOS 6.7 安装配置 nagios

    一.简介    Nagios是一款开源的免费网络监视工具,能有效监控Windows.Linux和Unix的主机状态,交换机路由器等网络设置,打印机等.在系统或服务状态异常时发出邮件或短信报警,第一时间 ...

  7. final发布视频展示博客

    Part One [探路者]选题展示视频链接: http://v.youku.com/v_show/id_XMzIxMDM2MTQ1Ng==.html?spm=a2h3j.8428770.341605 ...

  8. Leetcode题库——12.整数转罗马数字

    @author: ZZQ @software: PyCharm @file: intToRoman.py @time: 2018/9/28 21:59 要求: 字符 数值 I 1 V 5 X 10 L ...

  9. 未能加载文件或程序集“Microsoft.ReportViewer.WebForms, Version=10.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”或它的某一个依赖项。系统找不到指定的文件

    发布的打包项目在本机测试好使,部署到客户服务器上报错 分析器错误消息: 未能加载文件或程序集“Microsoft.ReportViewer.WebForms, Version=10.0.0.0, Cu ...

  10. grunt入门讲解2:如何使用 Gruntfile 配置任务

    Grunt的task配置都是在 Gruntfile 中的grunt.initConfig方法中指定的.此配置主要包括以任务名称命名的属性,和其他任意数据.一旦这些代表任意数据的属性与任务所需要的属性相 ...