【BZOJ3609】人人尽说江南好(博弈论)
【BZOJ3609】人人尽说江南好(博弈论)
题面
题解
昨天考试的时候,毒瘤出题人出了一个\(noip\)博弈十合一然后他就被阿鲁巴了,因为画面残忍,就不再展开。
这题是他的十合一中的第四问,然而我并不会做,所以自己就大力YY了一下,
首先一定有\([n/m]\)个大小为\(m\)的堆,那么还剩下\(n\%m\)个石子,而它们不受限制,所以一共可以操作\(max(n\%m-1,0)\)次,而前面那么多堆合并的次数也是已知的,所以可以直接判断要合并多少次,然后就知道谁赢了。
正确性并不会证明。
#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int main()
{
int T=read();
while(T--)
{
int n=read(),m=read();
int k=(int)(n/m)*(m-1)%2;n%=m;
if(n>1&&n%2==0)k^=1;
printf("%d\n",k^1);
}
return 0;
}
【BZOJ3609】人人尽说江南好(博弈论)的更多相关文章
- [HEOI2014]人人尽说江南好 博弈论
题面 题面 题解 感觉这题挺神仙的,根据一些奇奇怪怪的证明可以得到: 最后的终止状态一定是\(m, m, m, m, .... n \% m\). 因此我们可以O(1)计算到终止状态所需步数,然后根据 ...
- BZOJ3609 Heoi2014 人人尽说江南好【推理+结论】
BZOJ3609 Heoi2014 人人尽说江南好 Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时 ...
- bzoj3609 [Heoi2014]人人尽说江南好 博弈
[Heoi2014]人人尽说江南好 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 581 Solved: 420[Submit][Status][D ...
- BZOJ 3609: [Heoi2014]人人尽说江南好
3609: [Heoi2014]人人尽说江南好 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 470 Solved: 336[Submit][Sta ...
- [HEOI2014] 人人尽说江南好
[HEOI2014] 人人尽说江南好 题目大意:一个博弈游戏,地上\(n\)堆石子,每堆石子有\(1\)个,每次可以合并任意两个石子堆\(a,b\),要求\(a + b \leq m\),问先手赢还是 ...
- bzoj3609 [Heoi2014]人人尽说江南好
Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要边玩 ...
- [BZOJ3609][Heoi2014]人人尽说江南好 结论题
Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要 ...
- BZOJ3609 [Heoi2014]人人尽说江南好 【博弈】
题目链接 BZOJ3609 题解 我们假设最后合成若干个\(m\),和\(n \mod m\),此时合成次数是最多的,也唯一确定胜利者 可以发现,在轮流操作的情况下,胜利者一定可以将终态变为这个状态 ...
- bzoj3609【HEOI2014】人人尽说江南好
题意:http://www.lydsy.com/JudgeOnline/problem.php?id=3609 sol :博弈论 通过打表找规律,发现答案是%m循环的,且当m为偶数时取反 因为我太 ...
随机推荐
- 前端基础css
CSS主要学习的是选择器和样式属性. 导入css的方式:行内样式,内部样式,外部样式(推荐使用) 行内样式:在标记的style属性中设定CSS样式 <p style="color: g ...
- Hyperledger Fabric -- gossip 协议
Hyperledger gossip 本文记述了Hyperledger Fabric 中 一种网络数据同步协议--gossip,它的主要作用是致力于账本数据的安全传输,保证不同节点之间状态的同步和 ...
- (xampp)lampp 下配置https(ssl)自签双向认证以后 apache无法启动解决方案
自签CA一般是没有应用场景的,因为需要客户端浏览器导入证书才能访问 但是在某些需要内部使用的场景下,确实是一个解决方案 但是在lampp配置了双向认证以后发现 原来自带的管理命令 lampp star ...
- 配置idea
http://www.cnblogs.com/yangyquin/p/5285272.html
- python2.6更改为Python2.7
文中为Python2.6.6,改为Python2.6即可,因为没有/usr/bin/python2.6.6,只有/usr/bin/python2.6 http://blog.csdn.net/jcjc ...
- C++ 类 复制构造函数 The Copy Constructor
一.复制构造函数的定义 复制构造函数是一种特殊的构造函数,具有一般构造函数的所有特性.复制构造函数创建一个新的对象,作为另一个对象的拷贝.复制构造函数只含有一个形参,而且其形参为本类对象的引用.复制构 ...
- C# Js 时间格式化问题
C# 后台: .ToString("dd-MMM-yyyy", System.Globalization. DateTimeFormatInfo.InvariantInfo) eg ...
- 团队项目开题Scrum Meeting报告
团队项目开题Scrum Meeting报告 在10月30号星期四的晚上我们团队找到了给我们代码的王翊学长,由学长给我们讲解了他编写IOS平台上北航MOOC系统的架构和思路, 因为我们团队没有苹果公司的 ...
- [buaa-SE-2017]个人作业-week3
个人作业-week3:案例分析 分析产品:Bing词典 Part1:调研&评测 1.软件评测和Bug汇报 这次我选择Bing词典的原因是在于,首先我使用过的词典软件较多,平台涵盖PC端.网站. ...
- 在visual studio中查看源代码
地址:https://docs.microsoft.com/zh-cn/visualstudio/ide/go-to-and-peek-definition?view=vs-2017 在 Visual ...