关于形如\(f_{i,j} = \sum_{t=1}^{|w|}\sum_{k=1}^{|v|}f_{i+w_t,j+v_k}\),其中\(w_t,v_k\)为一个定值的\(dp\)转移。
可以考虑放到坐标上,画出其转移路线,然后考虑组合意义。

Section1

求\(\sum_{i,j} \binom{a_i+b_i+a_j+b_j}{a_i+a_j}\),其中\(a,b\leq 4000,n\leq 10^6\)。

\(\binom{a_i+b_i+a_j+b_j}{a_i+a_j}\)等价于从\((-a_i,-b_i)\)走到\((a_j,b_j)\)的方案数。
建图后直接从左下往右上暴力\(dp\)出解。

Section2

定义一个\(n\)的排列合法,当且仅当:设\(n\)的位置为\(x\),有:
\[p_1<p_2<p_3....<p_{x-1}<p_x>p_{x+1}>....>p_{n-1}>p_n\]
有\(m\)个限制\((pos,v)\),形如\(p_{pos} = v\),
数据范围:\(m\leq n\leq 10^5\),求合法排列数。

考虑从小往大放,设\(f_{i,j}\)表示放完\(1,2...i\),左侧放了\(j\)个。
转移方程:\(f_{i,j} =f_{i-1,j-1} +f_{i-1,j}\)。
初始在\((0,0)\)每次放一个相当于移动\((+1,0)\)或\((+1,+1)\)。
限制相当于限制\(f_{v,j}\)必须通过特定方向到达该点。
而每一列最多就两个特殊点,直接对特殊点进行\(dp\),最后一列特殊处理一下即可。

Section3

[JLOI2015]骗我呢

考虑突变的位置,设\(f_{i,j}\)表示做到第\(i\)行,该行突变位置为\(j\)。
有:\(f_{i,j} = f_{i,j-1} +f_{i-1,j+1}\),其中\(f_{i,0} = f_{i-1,0}\)。
画出转移路线,把转移路线拽直可以发现,问题转化为:
从\((0,0)\)出发,到达\((n+m,n)\),且不经过\(y=x+2\)和\(y=x-(m+1)\)的方案数u。
容斥计算。

Section4

[NOI2018]冒泡排序

设\(f_{i,j}\)表示还剩下\(i\)个要放,前面的最大值为\(j\)的方案数。
显然当前点要么放比\(j\)大的数,要么放还没放的数中最下的那个。
由于我们是逆推所以:\(f_{i,j} = f_{i-1,j} + \sum_{k=j+1}^{n} f_{i-1,k} = \sum_{k=j}^n f_{i-1,k}\)。
考虑统计答案,枚举在哪个点\(i\)开始处于自由态。
由于不会放\(a_i\),而\(a_i\leq max_{pre}\),所以一定只能放比\(max_{pre}\)大的数。
此时的方案数为\(\sum_{k=max_{pre}+1}^n f_{n-i,k} = f_{n-i+1,max_{pre}+1}\)。
唯一的问题变为如何快速处理\(f\)。
显然合法的\(f_{i,j}\)需要满足\(j\ge n-i\),画出转移路线图,问题转化为:
从\((0,n)\)出发,不经过\(y=-x+(n-1)\)到达\((i,j)\)的方案数。
这是经典问题,答案为 \(\binom{i+n-j}{i} - \binom{i+n-j}{i+1}\)。

一类dp的网格模型的更多相关文章

  1. pcl曲面网格模型的三种显示方式

    pcl网格模型有三种可选的显示模式,分别是面片模式(surface)显示,线框图模式(wireframe)显示,点模式(point)显示.默认为面片模式进行显示.设置函数分别为: void pcl:: ...

  2. 使用k-means对3D网格模型进行分割

    使用k-means对3D网格模型进行分割 由于一些原因,最近在做网格分割的相关工作.网格分割的方法有很多,如Easy mesh cutting.K-means.谱分割.基于SDF的分割等.根据对分割要 ...

  3. VTK计算网格模型上的最短路径

    Dijkstra algorithm to compute the graph geodesic.Takes as input a polygonal mesh and performs a sing ...

  4. VTK拾取网格模型上的可见点

    消隐与Z-Buffer 使用缓冲器记录物体表面在屏幕上投影所覆盖范围内的全部像素的深度值,依次访问屏幕范围内物体表面所覆盖的每一像素,用深度小(深度用z值表示,z值小表示离视点近)的像素点颜色替代深度 ...

  5. [ural1057][Amount of Degrees] (数位dp+进制模型)

    Discription Create a code to determine the amount of integers, lying in the set [X; Y] and being a s ...

  6. tyvj 1062 合并傻子 区间dp,典型模型石子归并

    P1062 合并傻子 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 从前有一堆傻子,钟某人要合并他们~但是,合并傻子是要掉RP的...... 描述 在一个园 ...

  7. 区间dp模型之括号匹配打印路径 poj(1141)

    题目链接:Brackets Sequence 题目描写叙述:给出一串由'(')'' [ ' ' ] '组成的串,让你输出加入最少括号之后使得括号匹配的串. 分析:是区间dp的经典模型括号匹配.解说:h ...

  8. UE4编程之C++创建一个FPS工程(二)角色网格、动画、HUD、子弹类

    转自:http://blog.csdn.net/u011707076/article/details/44243103 紧接上回,本篇文章将和大家一同整理总结UE4关于角色网格.动画.子弹类和HUD的 ...

  9. (转)iOS Wow体验 - 第六章 - 交互模型与创新的产品概念(2)

    本文是<iOS Wow Factor:Apps and UX Design Techniques for iPhone and iPad>第六章译文精选的第二部分,其余章节将陆续放出.上一 ...

随机推荐

  1. selenium的基本定位方式总结

    Selenium提供了8种定位方式. id name class name tag name link text partial link text xpath css selector 这8种定位方 ...

  2. Netty源码分析第1章(Netty启动流程)---->第3节: 服务端channel初始化

    Netty源码分析第一章:Netty启动流程   第三节:服务端channel初始化 回顾上一小节的initAndRegister()方法: final ChannelFuture initAndRe ...

  3. Linux系统下搭建FTP/SFTP服务器

    传输文件经常使用ftp和sftp服务器.Windows下有多种可视化工具,使用快捷.Linux经常需要自行搭建这两种服务器,当然搭建熟练的话,会更加快捷. 1.检查Linux系统是否安装了vsftp和 ...

  4. Streamr助你掌控自己的数据(1)——教你5分钟上传数据至Streamr

    博客说明 所有刊发内容均可转载但是需要注明出处. 教你5分钟上传数据至Streamr 本系列文档主要介绍怎么通过Streamr管理自己的DATA,整个系列包括三篇教程文档,分别是:教你5分钟上传数据至 ...

  5. java第一次实验报告

    北京电子科技学院(BESTI) 实    验    报    告 课程名称:java实验      班级:1352         姓名:潘恒      学号:20135209 成绩:         ...

  6. iOS自学-混合编程

    OC调用swift,引入头文件 #improt "工程名字-swift.h" swift调用OC,在桥梁文件里面引入OC文件 的头文件 尽情混合编程吧...

  7. 使用switchPage.js插件jQuery全屏滚动翻页

    1. 先引入jquery.js,再引入switchPage.js 文件地址:点击打开链接 <script src="jquery.min.js"></script ...

  8. Task 10 统计从1到某个整数之间出现的1的次数

    任务:给定一个十进制的正整数,写下从1开始,到N的所有整数,然后数一下其中出现“1”的个数. 要求: 写一个函数 f(N) ,返回1 到 N 之间出现的 “1”的个数.例如 f(12) = 5. 在3 ...

  9. 《UML大战需求分析》-读后感二

    活动图将流成分解为一个一个的活动,通过活动的先后顺序来展示流程,而状态机图是从某个事物的状态是如何转变的角度来展示流程,首先确定事物,然后找出状态,状态之间的箭头叫转换,箭头上的文字说明了是什么事情导 ...

  10. 软工1816 · Beta冲刺(2/7)

    团队信息 队名:爸爸饿了 组长博客:here 作业博客:here 组员情况 组员1(组长):王彬 过去两天完成了哪些任务 完成考试 确定历史记录页面与排行榜页面的前端页面风格 接下来的计划 & ...