Eigen提供了解线性方程的计算方法,包括LU分解法,QR分解法,SVD(奇异值分解)、特征值分解等。对于一般形式如下的线性系统:

        

  解决上述方程的方式一般是将矩阵A进行分解,当然最基本的方法是高斯消元法。

  先来看Eigen 官方的第一个例程:

 #include <iostream>
#include <Eigen/Dense> using namespace std;
using namespace Eigen; int main()
{
Matrix3f A;
Vector3f b;
A << ,,, ,,, ,,;
b << ,,;
cout<<"Here is the Matrix A:\n"<< A <<endl;
cout<<" Here is the vector b:\n"<< b <<endl;
Vector3f x = A.colPivHouseholderQr().solve(b);
cout<<"The solution is:\n"<<x<<endl;
return ;
}

运行结果如下:

Eigen内置的解线性方程组的算法如下表所示:

使用这些接口也可以解决矩阵相乘的问题:

 #include <iostream>
#include <Eigen/Dense> using namespace std;
using namespace Eigen; int main()
{
Matrix2f A,b;
A << ,-,-,;
b << ,,,;
cout<<"Here is the matrix A:\n"<<A<<endl;
cout<<"Here is the right hand side b:\n"<<b<<endl;
Matrix2f x = A.ldlt().solve(b);
cout<<"The solution is:\n"<<x<<endl;
return ;
}

运行结果如下:

Eigen也提供了计算特征值和特征向量的算法:

下面是一个简单的例子:

 #include <iostream>
#include <Eigen/Dense> using namespace std;
using namespace Eigen; int main()
{
Matrix2f A;
A << ,,,;
cout<<"Here is the matrix A:\n"<<A<<endl;
SelfAdjointEigenSolver<Matrix2f> eigensolver(A);
if( eigensolver.info() != Success ) abort();
cout<<" The eigenvalues of A are:\n"<<eigensolver.eigenvalues()<<endl;
cout<<" Here is a matrix whose columns are eigenvectors of A\n"
<<" corresponding to these eigenvalues:\n"
<<eigensolver.eigenvectors()<<endl;
return ;
}

运行结果如下:

Eigen 也提供了求逆矩阵和求矩阵行列式的算法,但是这两种算法对于大型矩阵来说都是非常不经济的算法,当需要对大型矩阵做这种的操作时,需要自己判断到底需不需这样做。但是对于小型矩阵 则可以没有顾虑地使用。

下面是一个例子:

 #include <iostream>
#include <Eigen/Dense> using namespace std;
using namespace Eigen; int main()
{
Matrix3f A;
A << ,,,
,,,
-,,; cout<<"Here is the matrix A:\n"<<A<<endl;
cout<<"The determinant of A is "<<A.determinant()<<endl;
cout<<"The inverse of A is:\n"<<A.inverse()<<endl;
return ;
}

运行结果如下:

Eigen也提供了解最小二乘问题的解法,并给出两种实现,分别是BDCSVD和JacobiSVD,其中推荐使用的一种是BDCSVD。下面是一个例子:

 #include <iostream>
#include <Eigen/Dense> using namespace std;
using namespace Eigen; int main()
{
MatrixXf A = MatrixXf::Random(,);
cout<<"Here is the matrix A:\n"<<A<<endl;
VectorXf b = VectorXf::Random();
cout<<"Here is the right hand side b:\n"<<b<<endl;
cout<<"The least-squares solution is:\n"
<<A.bdcSvd(ComputeThinU|ComputeThinV).solve(b)<<endl;
return ;
}

运行结果如下:

Eigen学习之简单线性方程与矩阵分解的更多相关文章

  1. 简单的基于矩阵分解的推荐算法-PMF, NMF

    介绍: 推荐系统中最为主流与经典的技术之一是协同过滤技术(Collaborative Filtering),它是基于这样的假设:用户如果在过去对某些项目产生过兴趣,那么将来他很可能依然对其保持热忱.其 ...

  2. 用Spark学习矩阵分解推荐算法

    在矩阵分解在协同过滤推荐算法中的应用中,我们对矩阵分解在推荐算法中的应用原理做了总结,这里我们就从实践的角度来用Spark学习矩阵分解推荐算法. 1. Spark推荐算法概述 在Spark MLlib ...

  3. OpenCV 编程简单介绍(矩阵/图像/视频的基本读写操作)

    PS. 因为csdn博客文章长度有限制,本文有部分内容被截掉了.在OpenCV中文站点的wiki上有可读性更好.而且是完整的版本号,欢迎浏览. OpenCV Wiki :<OpenCV 编程简单 ...

  4. HAWQ + MADlib 玩转数据挖掘之(四)——低秩矩阵分解实现推荐算法

    一.潜在因子(Latent Factor)推荐算法 本算法整理自知乎上的回答@nick lee.应用领域:"网易云音乐歌单个性化推荐"."豆瓣电台音乐推荐"等. ...

  5. FAST MONTE CARLO ALGORITHMS FOR MATRICES II (快速的矩阵分解策略)

    目录 问题 算法 LINEARTIMESVD 算法 CONSTANTTIMESVD 算法 理论 算法1的理论 算法2 的理论 代码 Drineas P, Kannan R, Mahoney M W, ...

  6. ML.NET 示例:推荐之One Class 矩阵分解

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  7. 矩阵分解----Cholesky分解

    矩阵分解是将矩阵拆解成多个矩阵的乘积,常见的分解方法有 三角分解法.QR分解法.奇异值分解法.三角分解法是将原方阵分解成一个上三角矩阵和一个下三角矩阵,这种分解方法叫做LU分解法.进一步,如果待分解的 ...

  8. RS:关于协同过滤,矩阵分解,LFM隐语义模型三者的区别

    项亮老师在其所著的<推荐系统实战>中写道: 第2章 利用用户行为数据 2.2.2 用户活跃度和物品流行度的关系 [仅仅基于用户行为数据设计的推荐算法一般称为协同过滤算法.学术界对协同过滤算 ...

  9. 【RS】List-wise learning to rank with matrix factorization for collaborative filtering - 结合列表启发排序和矩阵分解的协同过滤

    [论文标题]List-wise learning to rank with matrix factorization for collaborative filtering   (RecSys '10 ...

随机推荐

  1. 【链表】Odd Even Linked List

    题目: Given a singly linked list, group all odd nodes together followed by the even nodes. Please note ...

  2. 【链表】Sort List(归并排序)

    题目: Sort a linked list in O(n log n) time using constant space complexity. 思路: nlogn的排序有快速排序.归并排序.堆排 ...

  3. attachEvent和addEventListener区别总结

    1.attachEvent与addEventListener的区别 支持的浏览器不同.attachEvent在IE9以下的版本中受到支持.其它的都支持addEventListener. 参数不同.ad ...

  4. svn合并分支到主干

    将分支pear_For2.3的最终版本合并到主干pear,操作步骤如下:1.选中主干pear右击-> Team -> 合并,弹出如下所示: 到此分支合并到主干已完成,若代码有冲突需找到冲突 ...

  5. TCP/IP协议栈概述及各层包头分析

    TCP/IP协议栈中各层包头的分析 Protocol列表示的是该数据包最高层对应的协议,Length列表示该包的长度(包括从底层的协议到最高层的协议,其中包头一般是,链路层14字节,IP20字节,TC ...

  6. For update带来的思考

    For update or not 起源 ​ 之所以想写这个专题,是因为最近在做一个抢占任务的实现.假设数据库很多个任务,在抢占发生之前任务的状态都是FREE.现在假设同时有一堆抢占线程开始工作,抢占 ...

  7. orcle查询记录的每天的第一条

    select * from (      select elec,time,Row_Number() OVER (partition by trunc(TIME) order by time) ran ...

  8. Python操作 Memcache、Redis

    Python操作 Memcached.Redis 一.Memcached和Redis对比 1.1 Memcached和Redis的数据类型对比 memcached只有一种数据类型,key对应value ...

  9. vue权限路由实现方式总结

    使用全局路由守卫 实现 前端定义好路由,并且在路由上标记相应的权限信息 const routerMap = [ { path: '/permission', component: Layout, re ...

  10. C学习笔记(1)-结构体、预处理与多文件结构程序设计

    一.结构体的定义与使用 #include <stdio.h> //定义结构体(类似模板) typedef struct { char name[50]; int age; char add ...