Redis—数据结构之list
Redis的列表对象底层所使用的数据结构其中之一就是list。
list
Redis的list是一个双端链表,其由3部分构成:链表节点、链表迭代器、链表。这一设计思想和STL的list是一样的,STL的list也是由这三部分组成。需要特别说明的是Redis用C语言实现了list的迭代器,比较巧妙,下面就来分析list源码。
list节点
节点的值为void*类型,从而可以保存不同类型的值,甚至是另一种类型的对象。
// 双端链表的节点
typedef struct listNode {
struct listNode *prev; // 指向上一个节点
struct listNode *next; // 指向下一个节点
void *value; // 指向节点的值, void*类型,使得节点可以保存不同类型的值
} listNode;
list迭代器
c语言实现c++中的迭代器;双端链表的迭代器,方便了遍历链表的操作;根据direction,可设置为前向/反向迭代器
typedef struct listIter {
listNode *next; // 指向迭代器方向上下一个链表结点
int direction; // AL_START_HEAD=0:从头部往尾部方向移动;AL_START_TAIL=1:往尾部往头部方向移动
} listIter;
其中direction的取值有:
/* Directions for iterators */
// 迭代器方向的宏定义
#define AL_START_HEAD 0
#define AL_START_TAIL 1
list
与一般设计类似,list中有指向头尾节点的指针,以及链表节点数量的计数。不同的是,由于链表节点为void*类型,被设计为可以存储不同类型的数据,甚至是另一种类型的对象,所以添加了与节点相关的3个函数,作用分别是复制、释放、比较节点的值。
// 双端链表
typedef struct list {
listNode *head; // 指向链表头节点
listNode *tail; // 指向链表尾节点
void *(*dup)(void *ptr); // 复制链表节点所保存的值
void (*free)(void *ptr); // 释放链表节点所保存的值
int (*match)(void *ptr, void *key); // 节点值比较函数
unsigned long len; // 链表的节点数目
} list;
list的操作函数
Redis用宏定义实现了一些复杂度为O(1)的链表操作,以提高list操作的效率。
/* Functions implemented as macros */
// 通过宏来实现一些O(1)时间复杂度的函数
#define listLength(l) ((l)->len)
#define listFirst(l) ((l)->head)
#define listLast(l) ((l)->tail)
#define listPrevNode(n) ((n)->prev)
#define listNextNode(n) ((n)->next)
#define listNodeValue(n) ((n)->value) #define listSetDupMethod(l,m) ((l)->dup = (m))
#define listSetFreeMethod(l,m) ((l)->free = (m))
#define listSetMatchMethod(l,m) ((l)->match = (m)) #define listGetDupMethod(l) ((l)->dup)
#define listGetFree(l) ((l)->free)
#define listGetMatchMethod(l) ((l)->match)
list的源码比较好理解,本人对其已经做了详细的注释,就不仔细介绍了,下面附上源码及注释。list相关的文件有两个:adlist.h, adlist.c
adlist.h
#ifndef __ADLIST_H__
#define __ADLIST_H__ /* Node, List, and Iterator are the only data structures used currently. */ // redis的链表为双端链表
// 节点的值为void*类型,从而可以保存不同类型的值
// 结合dup,free,match函数实现链表的多态 // 双端链表的节点
typedef struct listNode {
struct listNode *prev; // 指向上一个节点
struct listNode *next; // 指向下一个节点
void *value; // 指向节点的值, void*类型,使得节点可以保存不同类型的值
} listNode; // c语言实现c++中的迭代器!!!
// 双端链表的迭代器,方便了遍历链表的操作
// 根据direction,可设置为前向/反向迭代器
typedef struct listIter {
listNode *next; // 指向迭代器方向上下一个链表结点
int direction; // AL_START_HEAD=0:从头部往尾部方向移动;AL_START_TAIL=1:往尾部往头部方向移动
} listIter; // 双端链表
typedef struct list {
listNode *head; // 指向链表头节点
listNode *tail; // 指向链表尾节点
void *(*dup)(void *ptr); // 复制链表节点所保存的值
void (*free)(void *ptr); // 释放链表节点所保存的值
int (*match)(void *ptr, void *key); // 节点值比较函数
unsigned long len; // 链表的节点数目
} list; /* Functions implemented as macros */
// 通过宏来实现一些O(1)时间复杂度的函数
#define listLength(l) ((l)->len)
#define listFirst(l) ((l)->head)
#define listLast(l) ((l)->tail)
#define listPrevNode(n) ((n)->prev)
#define listNextNode(n) ((n)->next)
#define listNodeValue(n) ((n)->value) #define listSetDupMethod(l,m) ((l)->dup = (m))
#define listSetFreeMethod(l,m) ((l)->free = (m))
#define listSetMatchMethod(l,m) ((l)->match = (m)) #define listGetDupMethod(l) ((l)->dup)
#define listGetFree(l) ((l)->free)
#define listGetMatchMethod(l) ((l)->match) /* Prototypes */
// list数据结构相关的函数
// 具体含义见adlist.c
list *listCreate(void);
void listRelease(list *list);
list *listAddNodeHead(list *list, void *value);
list *listAddNodeTail(list *list, void *value);
list *listInsertNode(list *list, listNode *old_node, void *value, int after);
void listDelNode(list *list, listNode *node);
listIter *listGetIterator(list *list, int direction);
listNode *listNext(listIter *iter);
void listReleaseIterator(listIter *iter);
list *listDup(list *orig);
listNode *listSearchKey(list *list, void *key);
listNode *listIndex(list *list, long index);
void listRewind(list *list, listIter *li);
void listRewindTail(list *list, listIter *li);
void listRotate(list *list); /* Directions for iterators */
// 迭代器方向的宏定义
#define AL_START_HEAD 0
#define AL_START_TAIL 1 #endif /* __ADLIST_H__ */
adlist.c
/* adlist.c - A generic doubly linked list implementation
*/ #include <stdlib.h>
#include "adlist.h"
#include "zmalloc.h" /* Create a new list. The created list can be freed with
* AlFreeList(), but private value of every node need to be freed
* by the user before to call AlFreeList().
*
* On error, NULL is returned. Otherwise the pointer to the new list. */ // 创建一个链表
// 返回值:list/NULL
list *listCreate(void)
{
struct list *list; if ((list = zmalloc(sizeof(*list))) == NULL) // 为链表分配内存
return NULL;
// 初始化链表结构体的成员
list->head = list->tail = NULL;
list->len = ;
list->dup = NULL;
list->free = NULL;
list->match = NULL;
return list; // 返回为新链表分配的内存的起始地址
} /* Free the whole list.
*
* This function can't fail. */ // 释放链表及链表节点
void listRelease(list *list)
{
unsigned long len;
listNode *current, *next; current = list->head;
len = list->len;
while(len--) {
next = current->next;
if (list->free) list->free(current->value); // 释放链表节点的值
zfree(current); // 释放链表节点
current = next;
}
zfree(list); // 释放链表
} /* Add a new node to the list, to head, containing the specified 'value'
* pointer as value.
*
* On error, NULL is returned and no operation is performed (i.e. the
* list remains unaltered).
* On success the 'list' pointer you pass to the function is returned. */ // 从双端链表的头部插入新节点
// 返回值:list/NULL
list *listAddNodeHead(list *list, void *value)
{
listNode *node; if ((node = zmalloc(sizeof(*node))) == NULL)
return NULL;
node->value = value;
if (list->len == ) { // 原链表为一空链表
list->head = list->tail = node;
node->prev = node->next = NULL;
} else {
// 插入到双端链表的头结点之前
node->prev = NULL;
node->next = list->head;
list->head->prev = node;
list->head = node;
}
list->len++;
return list;
} /* Add a new node to the list, to tail, containing the specified 'value'
* pointer as value.
*
* On error, NULL is returned and no operation is performed (i.e. the
* list remains unaltered).
* On success the 'list' pointer you pass to the function is returned. */ // 从双端链表的尾部插入新节点
// 返回值:list/NULL
list *listAddNodeTail(list *list, void *value)
{
listNode *node; if ((node = zmalloc(sizeof(*node))) == NULL)
return NULL;
node->value = value;
if (list->len == ) {
list->head = list->tail = node;
node->prev = node->next = NULL;
} else {
node->prev = list->tail;
node->next = NULL;
list->tail->next = node;
list->tail = node;
}
list->len++;
return list;
} // 在链表list的节点old_node的前或后插入新节点
// after为0,则在old_node之前插入;否则,在old_node之后插入
// 返回值:list/NULL
list *listInsertNode(list *list, listNode *old_node, void *value, int after) {
listNode *node; if ((node = zmalloc(sizeof(*node))) == NULL)
return NULL;
node->value = value;
if (after) { // old_node之后插入
node->prev = old_node;
node->next = old_node->next;
if (list->tail == old_node) {
list->tail = node;
}
} else { // old_node之前插入
node->next = old_node;
node->prev = old_node->prev;
if (list->head == old_node) {
list->head = node;
}
}
if (node->prev != NULL) {
node->prev->next = node;
}
if (node->next != NULL) {
node->next->prev = node;
}
list->len++;
return list;
} /* Remove the specified node from the specified list.
* It's up to the caller to free the private value of the node.
*
* This function can't fail. */ // 删除链表list中节点node
void listDelNode(list *list, listNode *node)
{
if (node->prev)
node->prev->next = node->next;
else
list->head = node->next;
if (node->next)
node->next->prev = node->prev;
else
list->tail = node->prev;
if (list->free) list->free(node->value);
zfree(node);
list->len--;
} /* Returns a list iterator 'iter'. After the initialization every
* call to listNext() will return the next element of the list.
*
* This function can't fail. */ // 返回链表的迭代器
// 返回值:list/NULL
listIter *listGetIterator(list *list, int direction)
{
listIter *iter; if ((iter = zmalloc(sizeof(*iter))) == NULL) return NULL;
if (direction == AL_START_HEAD)
iter->next = list->head; // 设置为前向迭代器
else
iter->next = list->tail; // 设置为反向迭代器
iter->direction = direction;
return iter;
} /* Release the iterator memory */ // 释放迭代器的内存
void listReleaseIterator(listIter *iter) {
zfree(iter);
} /* Create an iterator in the list private iterator structure */ // 回绕迭代器到链表头部
void listRewind(list *list, listIter *li) {
li->next = list->head;
li->direction = AL_START_HEAD;
} // 回绕迭代器到链表尾部
void listRewindTail(list *list, listIter *li) {
li->next = list->tail;
li->direction = AL_START_TAIL;
} /* Return the next element of an iterator.
* It's valid to remove the currently returned element using
* listDelNode(), but not to remove other elements.
*
* The function returns a pointer to the next element of the list,
* or NULL if there are no more elements, so the classical usage patter
* is:
*
* iter = listGetIterator(list,<direction>);
* while ((node = listNext(iter)) != NULL) {
* doSomethingWith(listNodeValue(node));
* }
*
* */ // 返回迭代器所指向的元素,并将迭代器往其方向上移动一步
// 返回值:指向当前节点的指针/NULL
listNode *listNext(listIter *iter)
{
listNode *current = iter->next; if (current != NULL) {
if (iter->direction == AL_START_HEAD)
iter->next = current->next;
else
iter->next = current->prev;
}
return current;
} /* Duplicate the whole list. On out of memory NULL is returned.
* On success a copy of the original list is returned.
*
* The 'Dup' method set with listSetDupMethod() function is used
* to copy the node value. Otherwise the same pointer value of
* the original node is used as value of the copied node.
*
* The original list both on success or error is never modified. */ // 复制输入链表
// list*/NULL
list *listDup(list *orig)
{
list *copy;
listIter iter;
listNode *node; if ((copy = listCreate()) == NULL) // 创建新链表
return NULL;
copy->dup = orig->dup;
copy->free = orig->free;
copy->match = orig->match;
listRewind(orig, &iter); // 回绕迭代器到链表头部
while((node = listNext(&iter)) != NULL) { // 遍历原链表,顺序取出节点
void *value; if (copy->dup) {
value = copy->dup(node->value); // 通过list.dup函数复制节点值
if (value == NULL) {
listRelease(copy); // 出错释放链表
return NULL;
}
} else
value = node->value;
if (listAddNodeTail(copy, value) == NULL) { // 从新链表尾部插入值
listRelease(copy); // 出错释放链表
return NULL;
}
}
return copy;
} /* Search the list for a node matching a given key.
* The match is performed using the 'match' method
* set with listSetMatchMethod(). If no 'match' method
* is set, the 'value' pointer of every node is directly
* compared with the 'key' pointer.
*
* On success the first matching node pointer is returned
* (search starts from head). If no matching node exists
* NULL is returned. */ // 返回链表中节点值与key相匹配的节点
// listNode*/NULL
listNode *listSearchKey(list *list, void *key)
{
listIter iter;
listNode *node; listRewind(list, &iter);
while((node = listNext(&iter)) != NULL) {
if (list->match) {
if (list->match(node->value, key)) { // 调用list.match函数对节点值进行比较
return node;
}
} else {
if (key == node->value) {
return node;
}
}
}
return NULL;
} /* Return the element at the specified zero-based index
* where 0 is the head, 1 is the element next to head
* and so on. Negative integers are used in order to count
* from the tail, -1 is the last element, -2 the penultimate
* and so on. If the index is out of range NULL is returned. */ // 返回给定索引位置的节点
// index=0,返回头结点
// index < 0,则从尾部开始返回,index = -1,返回尾部节点
listNode *listIndex(list *list, long index) {
listNode *n; if (index < ) {
index = (-index)-;
n = list->tail;
while(index-- && n) n = n->prev;
} else {
n = list->head;
while(index-- && n) n = n->next;
}
return n;
} /* Rotate the list removing the tail node and inserting it to the head. */ // 将尾部节点弹出,插入到链表头节点之前,成为新的表头节点
void listRotate(list *list) {
listNode *tail = list->tail; if (listLength(list) <= ) return; /* Detach current tail */
list->tail = tail->prev;
list->tail->next = NULL;
/* Move it as head */
list->head->prev = tail;
tail->prev = NULL;
tail->next = list->head;
list->head = tail;
}
(全文完)
附:Redis系列:http://www.cnblogs.com/zxiner/p/7197415.html
Redis—数据结构之list的更多相关文章
- Redis 数据结构使用场景
转自http://get.ftqq.com/523.get 一.redis 数据结构使用场景 原来看过 redisbook 这本书,对 redis 的基本功能都已经熟悉了,从上周开始看 redis 的 ...
- Redis数据结构
Redis数据结构 Redis数据结构详解(一) 前言 Redis和Memcached最大的区别,Redis 除啦支持数据持久化之外,还支持更多的数据类型而不仅仅是简单key-value结构的数据 ...
- Redis数据结构底层知识总结
Redis数据结构底层总结 本篇文章是基于作者黄建宏写的书Redis设计与实现而做的笔记 数据结构与对象 Redis中数据结构的底层实现包括以下对象: 对象 解释 简单动态字符串 字符串的底层实现 链 ...
- Redis 数据结构与内存管理策略(上)
Redis 数据结构与内存管理策略(上) 标签: Redis Redis数据结构 Redis内存管理策略 Redis数据类型 Redis类型映射 Redis 数据类型特点与使用场景 String.Li ...
- Redis 数据结构与内存管理策略(下)
Redis 数据结构与内存管理策略(下) 标签: Redis Redis数据结构 Redis内存管理策略 Redis数据类型 Redis类型映射 Redis 数据类型特点与使用场景 String.Li ...
- Redis数据结构之intset
本文及后续文章,Redis版本均是v3.2.8 上篇文章<Redis数据结构之robj>,我们说到redis object数据结构,其有5中数据类型:OBJ_STRING,OBJ_LIST ...
- Redis数据结构之robj
本文及后续文章,Redis版本均是v3.2.8 我们知道一个database内的这个映射关系是用一个dict来维护的.dict的key固定用一种数据结构来表达,这这数据结构就是动态字符串sds.而va ...
- Redis 数据结构之dict(2)
本文及后续文章,Redis版本均是v3.2.8 上篇文章<Redis 数据结构之dict>,我们对dict的结构有了大致的印象.此篇文章对dict是如何维护数据结构的做个详细的理解. 老规 ...
- Redis 数据结构之dict
上篇文章<Redis数据结构概述>中,了解了常用数据结构.我们知道Redis以高效的方式实现了多种数据结构,因此把Redis看做为数据结构服务器也未尝不可.研究Redis的数据结构和正确. ...
- Redis数据结构以及应用场景
1. Redis数据结构以及应用场景 1.1. Memcache VS Redis 1.1.1. 选Memcache理由 系统业务以KV的缓存为主,数据量.并发业务量大,memcache较为合适 me ...
随机推荐
- BZOJ5312 冒险(线段树)
记录区间and/or,修改时如果对整个区间影响都相同就打标记,否则递归.复杂度不太会证. #include<iostream> #include<cstdio> #includ ...
- expect ssh 自动登录 example
#!/usr/bin/expect -f set ip [lindex $argv ] set port [lindex $argv ] set username [lindex $argv ] se ...
- 安装MySql出现Error Nr.1045的解决办法
如图,最后一步出现这个错误框 这是因为上次安装过MySql,其用户数据在卸载的时候没有被删除掉,解决办法如下: 显示隐藏的文件夹,打开C盘,找到下图文件删除之 删除之后再安装一遍MySQL,就可以了
- BZOJ 2742: [HEOI2012]Akai的数学作业
2742: [HEOI2012]Akai的数学作业 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 535 Solved: 226[Submit][S ...
- Rsync实现文件同步的算法(转载)
Rsync文件同步的核心算法 文章出处:http://coolshell.cn/articles/7425.html#more-7425 rsync是unix/linux下同步文件的一个高效算法,它能 ...
- google analysis教程
sklearn实战-乳腺癌细胞数据挖掘 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campai ...
- Java基础-包(package)的声明与访问
Java基础-包(package)的声明与访问 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.包的概念 Java中的包,其实就是我们电脑系统中的文件夹,包里存放的是程序员生成的 ...
- python---基础知识回顾(十)进程和线程(多线程)
前戏:多线程了解 使用多线程处理技术,可以有效的实现程序并发,优化处理能力.虽然进程也可以在独立的内存空间并发执行,但是生成一个新的进程必须为其分配独立的地址空间,并维护其代码段,堆栈段和数据段等,这 ...
- webapi框架搭建-安全机制(一)
本系列博客链接:webapi框架搭建系列博客 前言 webapi接口是开放给外部使用的,包括接口的地址,传参的规范,还有返回结果的说明.正因为接口的开放性,使得接口的安全很重要.试想一下,用抓包工具( ...
- poj 2185 Milking Grid
Milking Grid http://poj.org/problem?id=2185 Time Limit: 3000MS Memory Limit: 65536K Descript ...