偶然中发现,下面的两端代码表现不一样
void main(){
  void* p1 = malloc(32);
      free(p1);
  free(p1); // 这里会报double free 错误,程序退出
}
void main(){
  void* p1 = malloc(32);
  void* p2 = malloc(32);
  free(p1);
  free(p2);
  free(p1); // 正常没有报错
  free(p2);//正常,没有报错
  ...
}
我就开始疑惑,难道glibc malloc库对doublefree错误的检测那么傻B,只有连续两次free的指针一样才能检测出来?然后又尝试了memset溢出的情况,如下
void main(){
  void* p1 = malloc(32);
  memset(p1,1,64); // 这里溢出了p1
  void* p2 = malloc(32); // 
  printf("p1=%p,p2=%p\n",p1,p2); // 打印发现,malloc没有检测 memset的溢出影响
}
经过搜索,发现了,原来glibc malloc 库有一个环境变量MALLOC_CHECK_,当其值是0的时候,对上述两种情况(不连续地free同一段虚拟内存,memset溢出)是没有检测的,当我将其值设置为1/2/3时,对上述情况都会正常报错。经过这次测试,建议各位在开发过程中,最好是将MALLOC_CHECK_设置为非0,等到发布的时候,才将其值设置为0提升速度。
下面是glibc malloc调试相关的环境变量或工具说明,是比较好的参考
 
 
 
(转)
一)MALLOC_CHECK_
 
GNU的标准库(glibc)可以通过内置的调试特性对动态内存进行调试,它就是MALLOC_CHECK_环境变量,
它在默认情况下是不设定的,在老的版本默认这个值为0,新的版本默认值为2,但有一个矛盾,如果设定为空,它将会打印出长长的跟踪信息,这比设为2更详细.
 
MALLOC_CHECK_有三种设定,即:
MALLOC_CHECK_=0 ----- 关闭所有检查.
MALLOC_CHECK_=1 ----- 当有错误被探测到时,在标准错误输出(stderr)上打印错误信息.
MALLOC_CHECK_=2 ----- 当有错误被探测到时,不显示错误信息,直接进行中断.
 
 
我们用下面的小程序做一下测试,源程序如下:
#include <stdio.h>
#include <stdlib.h>
 
int main (int argc,char *argv[])
{
        int i;
        char* p = (char *)malloc(10);
        char* pt = p;
 
        for (i = 0;i < 10;i++)
        {
                p[i] = 'z';
        }
        free (p);
        free(pt);
        return 0;
}
gcc double-free.c -o double-free
 
注:这个程序会释放两次指针.
echo $MALLOC_CHECK_
 
我们在MALLOC_CHECK_默认设定的情况下,执行test程序,输出如下的信息:
 ./test 
*** glibc detected *** ./test: double free or corruption (fasttop): 0x0890f008 ***
======= Backtrace: =========
/lib/libc.so.6[0x175f7d]
/lib/libc.so.6(cfree+0x90)[0x1795d0]
./test[0x80483dc]
/lib/libc.so.6(__libc_start_main+0xdc)[0x125dec]
./test[0x8048301]
======= Memory map: ========
00110000-00247000 r-xp 00000000 08:01 3704502    /lib/libc-2.5.so
00247000-00249000 r-xp 00137000 08:01 3704502    /lib/libc-2.5.so
00249000-0024a000 rwxp 00139000 08:01 3704502    /lib/libc-2.5.so
0024a000-0024d000 rwxp 0024a000 00:00 0 
00b51000-00b6a000 r-xp 00000000 08:01 3704501    /lib/ld-2.5.so
00b6a000-00b6b000 r-xp 00018000 08:01 3704501    /lib/ld-2.5.so
00b6b000-00b6c000 rwxp 00019000 08:01 3704501    /lib/ld-2.5.so
00bf3000-00bf4000 r-xp 00bf3000 00:00 0          [vdso]
00dab000-00db6000 r-xp 00000000 08:01 3704511    /lib/libgcc_s-4.1.1-20070105.so.1
00db6000-00db7000 rwxp 0000a000 08:01 3704511    /lib/libgcc_s-4.1.1-20070105.so.1
08048000-08049000 r-xp 00000000 08:01 327681     /root/test
08049000-0804a000 rw-p 00000000 08:01 327681     /root/test
0890f000-08930000 rw-p 0890f000 00:00 0 
b7e00000-b7e21000 rw-p b7e00000 00:00 0 
b7e21000-b7f00000 ---p b7e21000 00:00 0 
b7f26000-b7f27000 rw-p b7f26000 00:00 0 
b7f3b000-b7f3c000 rw-p b7f3b000 00:00 0 
bfdcf000-bfde4000 rw-p bfdcf000 00:00 0          [stack]
Aborted
 
这里我们调整MALLOC_CHECK_为0,再次运行程序,如下:
export MALLOC_CHECK_=0
./test 
注:我们看到程序没有任何输出.
 
我们将MALLOC_CHECK_调整为1,再次运行程序,如下:
export MALLOC_CHECK_=1
./test 
malloc: using debugging hooks
*** glibc detected *** ./test: free(): invalid pointer: 0x0811e008 ***
注:我们看到每次运行程序都会有malloc: using debugging hooks的输出,同时程序检测到free()两次释放的问题.
 
我们将MALLOC_CHECK_调整为2,再次运行程序,如下:
export MALLOC_CHECK_=2
./test 
Aborted
注:我们看到程序只输出了Aborted,并中断了程序的运行.
 
 
 
二)用mtrace查找内存泄露
 
mtrace是由glibc提供的一个工具,在Redhat中将它打包在glibc-utils包中.
 
我们安装此包,如下:
rpm -ivh /mnt/Server/glibc-utils-2.5-12.i386.rpm
 
mtrace的主要作用是查找内存泄露,为了应用mtrace程序,必须在代码中使用glibc提供的函数mtrace和muntrace.另外,必须设置一个文件的名字给环境变量MALLOC_TRACE,因为glibc利用它为mtrace程序存储数据.
当执行完代码后,数据将会存在这个确认的文件中,每执行一次程序,这个文件的内容都会被重写.
 
我们用下面的代码进行测试,如下:
 
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <mcheck.h>
 
 
int main (int argc,char *argv[])
{
        setenv("MALLOC_TRACE","output",1);
        mtrace();
        int i;
        char* p = (char *)malloc(10);
        char* pt = p;
 
        for (i = 0;i < 10;i++)
        {
                p[i] = 'z';
        }
        return 0;
}
 
编译:
gcc test.c -o test
 
注:程序用setenv函数设定环境变量MALLOC_TRACE
 
运行程序:
./test 
 
这时在当前目录下生成了一个名为output的文件,如下:
cat output 
= Start
@ ./test:[0x80483f2] + 0x82ba438 0xa
@ /lib/libc.so.6:(clearenv+0x7c)[0xb9910c] - 0x82ba008
@ /lib/libc.so.6:(tdestroy+0x47)[0xc39b77] - 0x82ba090
@ /lib/libc.so.6:(tdestroy+0x4f)[0xc39b7f] - 0x82ba0b0
 
用mtrace查找内存泄露,它告诉我们memory not freed
mtrace output 
- 0x082ba008 Free 3 was never alloc'd 0xb9910c
- 0x082ba090 Free 4 was never alloc'd 0xc39b77
- 0x082ba0b0 Free 5 was never alloc'd 0xc39b7f
 
Memory not freed:
-----------------
   Address     Size     Caller
0x082ba438      0xa  at 0x80483f2
 
 
 
 
三)使用memusage收集内存统计数据
 
memusage不需要在代码中做出任何指示.这个工具也来自由glibc-utils包.它以柱形显示程序占用了多少内存.它默认输出到标准输出中,用ASCII文本显示一个绘成图画似的柱形.如下:
memusage awk 'BEGIN{print "hello world"}'
hello world
 
Memory usage summary: heap total: 7487, heap peak: 6891, stack peak: 8624
         total calls   total memory   failed calls
 malloc|         58           7487              0
realloc|          0              0              0  (nomove:0, dec:0, free:0)
 calloc|          0              0              0
   free|         15            797
Histogram for block sizes:
    0-15             27  46% ==================================================
   16-31              7  12% ============
   32-47              2   3% ===
   48-63              6  10% ===========
   64-79              1   1% =
   80-95              1   1% =
   96-111             1   1% =
  112-127             4   6% =======
  160-175             1   1% =
  176-191             2   3% ===
  192-207             1   1% =
  208-223             2   3% ===
  384-399             1   1% =
  480-495             1   1% =
 4000-4015            1   1% =
 
 
 
 
四)使用Electric Fence检测内存泄漏
 
Electric Fence用一些巧妙的技术来检测程序在堆内存区上的溢出,不需要用Electric Fence来修改代码,相反,它提供一个动态库,这个库有多个动态分配函数.
一个名为ef的脚本被用来处理环境变量LD_PRELOAD的设置,我们可以用ef命令来调用程序.
 
下面是安装Electric Fence,如下:
rpm -ivh /mnt/Server/ElectricFence-2.2.2-20.2.2.i386.rpm
 
我们下面用一个小程序做测试,源代码如下:
#include <string.h>
 
int
main (int argc, char *argv[])
{
        int *ptr = new int;
        memset(ptr, 0, sizeof(int) + 1);
        delete ptr;
}
 
编译:
g++ new-corrupt.cpp -o new-corrupt
注:这个小程序会导致边界溢出.
 
执行程序:
./new-corrupt
注:程序没有任何指示.
 
 
我们用ef执行这个程序,如下:
ef ./new-corrupt   
 
  Electric Fence 2.2.0 Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>
/usr/bin/ef: line 20:  4148 Segmentation fault      ( export LD_PRELOAD=libefence.so.0.0; exec $* )
注:此时有输出信息,它告诉我们出现了Segmentation {敏感词}t,并且指明在哪行出现的问题.
 
我们也可以将electric fence和gdb联用,如下:
编译程序,同时指定-g选项
g++ -g new-corrupt.cpp -o new-corrupt 
 
用gdb打开程序,如下:
gdb ./new-corrupt
GNU gdb Red Hat Linux (6.5-16.el5rh)
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux-gnu"...Using host libthread_db library "/lib/libthread_db.so.1".
 
(gdb) set environment LD_PRELOAD libefence.so.0.0              /*设置环境变量LD_PRELOAD为libefence.so.0.0*/
(gdb) run                                                      /*运行程序*/
Starting program: /root/new-corrupt 
 
  Electric Fence 2.2.0 Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>
 
  Electric Fence 2.2.0 Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>
 
Program received signal SIGSEGV, Segmentation fault.
0x0804849d in main () at new-corrupt.cpp:7                     /*检查出在调用memset函数时导致越界*/
7               memset(ptr, 0, sizeof(int) + 1);
(gdb) quit
 
下面我们在gdb中不指定环境变量,我们看到gdb没有打印出相关的错误信息.
gdb ./new-corrupt
GNU gdb Red Hat Linux (6.5-16.el5rh)
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux-gnu"...Using host libthread_db library "/lib/libthread_db.so.1".
 
(gdb) run
Starting program: /root/new-corrupt 
 
Program exited normally.

linux调试工具glibc的演示分析的更多相关文章

  1. linux调试工具glibc的演示分析-core dump double free【转】

    转自:http://www.cnblogs.com/jiayy/p/3475544.html 偶然中发现,下面的两端代码表现不一样 void main(){ void* p1 = malloc(32) ...

  2. Linux调试工具

    1. 使用printf调试 #ifdef DEBUG Printf(“valriable x has value = %d\n”, x) #endif 然后在编译选项中加入-DDEBUG 更复杂的调试 ...

  3. Linux下库打桩机制分析 function Interposition

    [时间:2017-08] [状态:Open] [关键词:linux, libray,打桩,interposition,函数替换,链接器,gcc,malloc,free] 0 引言 本文主要参考< ...

  4. linux实践之ELF文件分析

    linux实践之ELF文件分析 下面开始elf文件的分析. 我们首先编写一个简单的C代码. 编译链接生成可执行文件. 首先,查看scn15elf.o文件的详细信息. 以16进制形式查看scn15elf ...

  5. Linux内核--网络栈实现分析(十一)--驱动程序层(下)

    本文分析基于Linux Kernel 1.2.13 原创作品,转载请标明http://blog.csdn.net/yming0221/article/details/7555870 更多请查看专栏,地 ...

  6. Linux内核--网络栈实现分析(七)--数据包的传递过程(下)

    本文分析基于Linux Kernel 1.2.13 原创作品,转载请标明http://blog.csdn.net/yming0221/article/details/7545855 更多请查看专栏,地 ...

  7. linux core dump 文件 gdb分析

    core dump又叫核心转储, 当程序运行过程中发生异常, 程序异常退出时, 由操作系统把程序当前的内存状况存储在一个core文件中, 叫core dump. (linux中如果内存越界会收到SIG ...

  8. 网易视频云技术分享:linux软raid的bitmap分析

    网易视频云是网易倾力打造的一款基于云计算的分布式多媒体处理集群和专业音视频技术,提供稳定流畅.低时延.高并发的视频直播.录制.存储.转码及点播等音视频的PAAS服务,在线教育.远程医疗.娱乐秀场.在线 ...

  9. Linux信号(signal) 机制分析

    Linux信号(signal) 机制分析 [摘要]本文分析了Linux内核对于信号的实现机制和应用层的相关处理.首先介绍了软中断信号的本质及信号的两种不同分类方法尤其是不可靠信号的原理.接着分析了内核 ...

随机推荐

  1. oracle +plsql装完省略号不能点

    1.如图 2.复制 TNS 服务名 3.复制到 登录框的 Database ,输入用户名密码,点OK..可以进去了,省略号变成可点击状态

  2. sqlmap利用DNS进行oob(out of band)注入(转)

      0x00 起因 实际案子的时候遇到了一个注入,过狗可以使用sqlmap,但是是基于时间的注入和限制频率需要使用--delay参数,本来就是延时再加上--delay等的心力憔悴.所有有了下面介绍使用 ...

  3. Python OS模块操作文件和目录

    #-*-coding:utf-8-*- import os import shutil ###############OS模块############## #获得当前python脚本的工作目录 os. ...

  4. Go interface{}、类型断言

    在 golang 中 interface{} 可用于向函数传递任意类型的变量, 但在函数内部使用的话, 该变量的类型就是 interface{}, 也称为空接口类型 比如我们定义一个函数, 输出字符串 ...

  5. 解题:CQOI 2013 和谐矩阵

    题面 踩踩时间复杂度不正确的高斯消元 首先可以发现第一行确定后就可以确定整个矩阵,所以可以枚举第一行的所有状态然后$O(n)$递推检查是否合法 $O(n)$递推的方法是这样的:设$pre$为上一行,$ ...

  6. [VS2012] 无法查找或打开 PDB 文件

    http://www.cnblogs.com/southernduck/archive/2012/11/23/2784966.html 用VS2012调试一个控制台程序的时候,出现一下提示信息: “w ...

  7. Go_19: Golang 中错误与异常需要重新认识

    如何进行错误处理,这是一个Go程序员之间,特别是一些新的Go程序员,会经常讨论的问题.讨论到最后往往由于以下代码的多次出现而变成了抱怨. if err != nil { return err } 我们 ...

  8. google analysis教程

    sklearn实战-乳腺癌细胞数据挖掘 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campai ...

  9. pyqt5的代码

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  10. java基础-Integer类常用方法介绍

    java基础-Integer类常用方法介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 在实际程序使用中,程序界面上用户输入的数据都是以字符串类型进行存储的.而程序开发中,我们需 ...