转自:https://www.cnblogs.com/skyfsm/p/6806246.html

object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。object detection要解决的问题就是物体在哪里,是什么这整个流程的问题。然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别。

object detection技术的演进:
RCNN->SppNET->Fast-RCNN->Faster-RCNN

从图像识别的任务说起
这里有一个图像任务:
既要把图中的物体识别出来,又要用方框框出它的位置。

上面的任务用专业的说法就是:图像识别+定位
图像识别(classification):
输入:图片
输出:物体的类别
评估方法:准确率

定位(localization):
输入:图片
输出:方框在图片中的位置(x,y,w,h)
评估方法:检测评价函数 intersection-over-union ( IOU )

卷积神经网络CNN已经帮我们完成了图像识别(判定是猫还是狗)的任务了,我们只需要添加一些额外的功能来完成定位任务即可。

定位的问题的解决思路有哪些?
思路一:看做回归问题
看做回归问题,我们需要预测出(x,y,w,h)四个参数的值,从而得出方框的位置。

步骤1:
  • 先解决简单问题, 搭一个识别图像的神经网络
  • 在AlexNet VGG GoogleLenet上fine-tuning一下

步骤2:
  • 在上述神经网络的尾部展开(也就说CNN前面保持不变,我们对CNN的结尾处作出改进:加了两个头:“分类头”和“回归头”)
  • 成为classification + regression模式

步骤3:
  • Regression那个部分用欧氏距离损失
  • 使用SGD训练

步骤4:
  • 预测阶段把2个头部拼上
  • 完成不同的功能

这里需要进行两次fine-tuning
第一次在ALexNet上做,第二次将头部改成regression head,前面不变,做一次fine-tuning

Regression的部分加在哪?

有两种处理方法:
  • 加在最后一个卷积层后面(如VGG)
  • 加在最后一个全连接层后面(如R-CNN)

regression太难做了,应想方设法转换为classification问题。
regression的训练参数收敛的时间要长得多,所以上面的网络采取了用classification的网络来计算出网络共同部分的连接权值。

思路二:取图像窗口
  • 还是刚才的classification + regression思路
  • 咱们取不同的大小的“框”
  • 让框出现在不同的位置,得出这个框的判定得分
  • 取得分最高的那个框

左上角的黑框:得分0.5

右上角的黑框:得分0.75

左下角的黑框:得分0.6

右下角的黑框:得分0.8

根据得分的高低,我们选择了右下角的黑框作为目标位置的预测。
注:有的时候也会选择得分最高的两个框,然后取两框的交集作为最终的位置预测。

疑惑:框要取多大?
取不同的框,依次从左上角扫到右下角。非常粗暴啊。

总结一下思路:
对一张图片,用各种大小的框(遍历整张图片)将图片截取出来,输入到CNN,然后CNN会输出这个框的得分(classification)以及这个框图片对应的x,y,h,w(regression)。

这方法实在太耗时间了,做个优化。
原来网络是这样的:

优化成这样:把全连接层改为卷积层,这样可以提提速。

物体检测(Object Detection)
当图像有很多物体怎么办的?难度可是一下暴增啊。

那任务就变成了:多物体识别+定位多个物体
那把这个任务看做分类问题?

看成分类问题有何不妥?
  • 你需要找很多位置, 给很多个不同大小的框
  • 你还需要对框内的图像分类
  • 当然, 如果你的GPU很强大, 恩, 那加油做吧…

看做classification, 有没有办法优化下?我可不想试那么多框那么多位置啊!
有人想到一个好方法:
找出可能含有物体的框(也就是候选框,比如选1000个候选框),这些框之间是可以互相重叠互相包含的,这样我们就可以避免暴力枚举的所有框了。

大牛们发明好多选定候选框的方法,比如EdgeBoxes和Selective Search。
以下是各种选定候选框的方法的性能对比。

有一个很大的疑惑,提取候选框用到的算法“选择性搜索”到底怎么选出这些候选框的呢?那个就得好好看看它的论文了,这里就不介绍了。

R-CNN横空出世
基于以上的思路,RCNN的出现了。

步骤一:训练(或者下载)一个分类模型(比如AlexNet)

步骤二:对该模型做fine-tuning
  • 将分类数从1000改为20
  • 去掉最后一个全连接层


步骤三:特征提取
  • 提取图像的所有候选框(选择性搜索)
  • 对于每一个区域:修正区域大小以适合CNN的输入,做一次前向运算,将第五个池化层的输出(就是对候选框提取到的特征)存到硬盘

步骤四:训练一个SVM分类器(二分类)来判断这个候选框里物体的类别
每个类别对应一个SVM,判断是不是属于这个类别,是就是positive,反之nagative
比如下图,就是狗分类的SVM

步骤五:使用回归器精细修正候选框位置:对于每一个类,训练一个线性回归模型去判定这个框是否框得完美。

RCNN的进化中SPP Net的思想对其贡献很大,这里也简单介绍一下SPP Net。

SPP Net
SPP:Spatial Pyramid Pooling(空间金字塔池化)
它的特点有两个:

1.结合空间金字塔方法实现CNNs的对尺度输入。
一般CNN后接全连接层或者分类器,他们都需要固定的输入尺寸,因此不得不对输入数据进行crop或者warp,这些预处理会造成数据的丢失或几何的失真。SPP Net的第一个贡献就是将金字塔思想加入到CNN,实现了数据的多尺度输入。

如下图所示,在卷积层和全连接层之间加入了SPP layer。此时网络的输入可以是任意尺度的,在SPP layer中每一个pooling的filter会根据输入调整大小,而SPP的输出尺度始终是固定的。

 

2.只对原图提取一次卷积特征
在R-CNN中,每个候选框先resize到统一大小,然后分别作为CNN的输入,这样是很低效的。
所以SPP Net根据这个缺点做了优化:只对原图进行一次卷积得到整张图的feature map,然后找到每个候选框zaifeature map上的映射patch,将此patch作为每个候选框的卷积特征输入到SPP layer和之后的层。节省了大量的计算时间,比R-CNN有一百倍左右的提速。

Fast R-CNN
SPP Net真是个好方法,R-CNN的进阶版Fast R-CNN就是在RCNN的基础上采纳了SPP Net方法,对RCNN作了改进,使得性能进一步提高。

R-CNN与Fast RCNN的区别有哪些呢?
先说RCNN的缺点:即使使用了selective search等预处理步骤来提取潜在的bounding box作为输入,但是RCNN仍会有严重的速度瓶颈,原因也很明显,就是计算机对所有region进行特征提取时会有重复计算,Fast-RCNN正是为了解决这个问题诞生的。

大牛提出了一个可以看做单层sppnet的网络层,叫做ROI Pooling,这个网络层可以把不同大小的输入映射到一个固定尺度的特征向量,而我们知道,conv、pooling、relu等操作都不需要固定size的输入,因此,在原始图片上执行这些操作后,虽然输入图片size不同导致得到的feature map尺寸也不同,不能直接接到一个全连接层进行分类,但是可以加入这个神奇的ROI Pooling层,对每个region都提取一个固定维度的特征表示,再通过正常的softmax进行类型识别。另外,之前RCNN的处理流程是先提proposal,然后CNN提取特征,之后用SVM分类器,最后再做bbox regression,而在Fast-RCNN中,作者巧妙的把bbox regression放进了神经网络内部,与region分类和并成为了一个multi-task模型,实际实验也证明,这两个任务能够共享卷积特征,并相互促进。Fast-RCNN很重要的一个贡献是成功的让人们看到了Region Proposal+CNN这一框架实时检测的希望,原来多类检测真的可以在保证准确率的同时提升处理速度,也为后来的Faster-RCNN做下了铺垫。

画一画重点:
R-CNN有一些相当大的缺点(把这些缺点都改掉了,就成了Fast R-CNN)。
大缺点:由于每一个候选框都要独自经过CNN,这使得花费的时间非常多。
解决:共享卷积层,现在不是每一个候选框都当做输入进入CNN了,而是输入一张完整的图片,在第五个卷积层再得到每个候选框的特征

原来的方法:许多候选框(比如两千个)-->CNN-->得到每个候选框的特征-->分类+回归
现在的方法:一张完整图片-->CNN-->得到每张候选框的特征-->分类+回归

所以容易看见,Fast RCNN相对于RCNN的提速原因就在于:不过不像RCNN把每个候选区域给深度网络提特征,而是整张图提一次特征,再把候选框映射到conv5上,而SPP只需要计算一次特征,剩下的只需要在conv5层上操作就可以了。

在性能上提升也是相当明显的:

Faster R-CNN
Fast R-CNN存在的问题:存在瓶颈:选择性搜索,找出所有的候选框,这个也非常耗时。那我们能不能找出一个更加高效的方法来求出这些候选框呢?
解决:加入一个提取边缘的神经网络,也就说找到候选框的工作也交给神经网络来做了。
做这样的任务的神经网络叫做Region Proposal Network(RPN)。

具体做法:
  • 将RPN放在最后一个卷积层的后面
  • RPN直接训练得到候选区域

RPN简介:
  • 在feature map上滑动窗口
  • 建一个神经网络用于物体分类+框位置的回归
  • 滑动窗口的位置提供了物体的大体位置信息
  • 框的回归提供了框更精确的位置

一种网络,四个损失函数;
  • RPN calssification(anchor good.bad)
  • RPN regression(anchor->propoasal)
  • Fast R-CNN classification(over classes)
  • Fast R-CNN regression(proposal ->box)

速度对比

Faster R-CNN的主要贡献是设计了提取候选区域的网络RPN,代替了费时的选择性搜索,使得检测速度大幅提高。

最后总结一下各大算法的步骤:
RCNN
  1. 在图像中确定约1000-2000个候选框 (使用选择性搜索)
  2. 每个候选框内图像块缩放至相同大小,并输入到CNN内进行特征提取 
  3. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类
  4. 对于属于某一特征的候选框,用回归器进一步调整其位置

Fast RCNN
  1. 在图像中确定约1000-2000个候选框 (使用选择性搜索)
  2. 对整张图片输进CNN,得到feature map
  3. 找到每个候选框在feature map上的映射patch,将此patch作为每个候选框的卷积特征输入到SPP layer和之后的层
  4. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类
  5. 对于属于某一特征的候选框,用回归器进一步调整其位置

Faster RCNN
  1. 对整张图片输进CNN,得到feature map
  2. 卷积特征输入到RPN,得到候选框的特征信息
  3. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类
  4. 对于属于某一特征的候选框,用回归器进一步调整其位置

总的来说,从R-CNN, SPP-NET, Fast R-CNN, Faster R-CNN一路走来,基于深度学习目标检测的流程变得越来越精简,精度越来越高,速度也越来越快。可以说基于region proposal的R-CNN系列目标检测方法是当前目标检测技术领域最主要的一个分支。

RCNN,fast R-CNN,faster R-CNN的更多相关文章

  1. 机器学习: R-CNN, Fast R-CNN and Faster R-CNN

    做语义分割的大概都知道这几篇文章了,将一个传统的计算机视觉模型,用CNN一点一点的替换,直到最后构建了一个完整的基于CNN的端到端的模型.这几篇文章有一定的连贯性.从中可以看到一种研究的趋势走向. 上 ...

  2. RCNN,Fast RCNN,Faster RCNN 的前生今世:(2)R-CNN

    Region CNN(RCNN)可以说是利用深度学习进行目标检测的开山之作.作者Ross Girshick多次在PASCAL VOC的目标检测竞赛中折桂,2010年更带领团队获得终身成就奖,如今供职于 ...

  3. RCNN,Fast RCNN,Faster RCNN 的前生今世:(4) Fast RCNN 算法详解

    继2014年的RCNN之后,Ross Girshick在15年推出Fast RCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度.在Github上提供了源码. 同样使用最大规模的网络,Fast ...

  4. R语言 启动报错 *** glibc detected *** /usr/lib64/R/bin/exec/R: free(): invalid next size (fast): 0x000000000263a420 *** 错误 解决方案

    *** glibc detected *** /usr/lib64/R/bin/exec/R: free(): invalid next size (fast): 0x000000000263a420 ...

  5. RCNN,Fast RCNN,Faster RCNN 的前生今世:(2) R- CNN (3,2,1)

    3.三次IOU  2.2次model run  1,一次深度神经网络 rcnn主要作用就是用于物体检测,就是首先通过selective search 选择2000个候选区域,这些区域中有我们需要的所对 ...

  6. 深度学习(十三) R-CNN Fast RCNN

    object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题 ...

  7. Microsoft+R:Microsoft R Open (MRO)安装和多核运作

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本文转载于公众号大猫的R语言课堂,公众号作者使 ...

  8. python文件操作打开模式 r,w,a,r+,w+,a+ 区别辨析

    主要分成三大类: r 和 r+     "读"功能 r  只读 r+ 读写(先读后写) 辨析:对于r,只有读取功能,利用光标的移动,可以选择要读取的内容. 对于r+,同时具有读和写 ...

  9. w​i​n​d​o​w​s​ ​s​e​r​v​e​r​ ​2​0​0​8​ ​r​2​ ​启​用​索​引(转)

    08r2的“windows search”服务默认是不安装的,要想启用索引执行下列步骤:        1.打开“服务器管理”——选中“角色”——右边选中“添加角色”——勾选“文件服务”.    2. ...

随机推荐

  1. 关于 Java连接sql的转载

    Java连接SQL Server 2000数据库时,有两种方法: (1)通过Microsoft的JDBC驱动连接.此JDBC驱动共有三个文件,分别是mssqlserver.jar.msutil.jar ...

  2. Task 6.4 冲刺Two之站立会议6

    今天对视频的画面质量进行了优化,又把所有的界面更换了一些比较美观的图片和背景.使界面看起来更加地合理,易于接受.

  3. ASP.net四则运算《《《策略模式

    Calculator.cs using System; using System.Collections.Generic; using System.Linq; using System.Web; / ...

  4. Git初用心得

    第一次使用git,因为之前操作系统的实验需要,在虚拟机中使用过lniux系统,所以对这种用指令输入而不是图形化的程序感觉不是很陌生.感觉git还是很人性化的,git gui就是图形界面,操作起来也不复 ...

  5. 【DL.AI】《Structuring Machine Learning Projects》笔记

    一.改进模型的几个方法 Collect more data Collect more diverse training set Train algorithm longer with gradient ...

  6. [并查集] 1118. Birds in Forest (25)

    1118. Birds in Forest (25) Some scientists took pictures of thousands of birds in a forest. Assume t ...

  7. AngularJs 学习 (二)

    紧接着第一部分: 推荐阅读: http://adrianmejia.com/blog/2014/10/03/mean-stack-tutorial-mongodb-expressjs-angularj ...

  8. Scrum Meeting Beta - 10

    Scrum Meeting Beta - 10 NewTeam 2017/12/11 地点:新主楼F座二楼 任务反馈 团队成员 完成任务 计划任务 安万贺 完成了作业详情的本地存储Issue #165 ...

  9. 通过cmd命令安装、卸载、启动和停止Windows Service(InstallUtil.exe)

    步骤: 1.运行--〉cmd:打开cmd命令框 2.在命令行里定位到InstallUtil.exe所在的位置 InstallUtil.exe 默认的安装位置是在C:/Windows/Microsoft ...

  10. springcloud微服务实战:Eureka+Zuul+Feign/Ribbon+Hystrix Turbine+SpringConfig+sleuth+zipkin

    相信现在已经有很多小伙伴已经或者准备使用springcloud微服务了,接下来为大家搭建一个微服务框架,后期可以自己进行扩展.会提供一个小案例: 服务提供者和服务消费者 ,消费者会调用提供者的服务,新 ...