BZOJ5118 Fib数列2(矩阵快速幂)
特殊矩阵的幂同样满足费马小定理。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define int long long
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
const int P=1125899839733759ll;
int T,n;
int ksc(int a,int b,int p)
{
int t=a*b-(int)((long double)a*b/p+0.5)*p;
return t<?t+p:t;
}
int ksm(int a,int k,int p)
{
int s=;
for (;k;k>>=,a=ksc(a,a,p)) if (k&) s=ksc(s,a,p);
return s;
}
struct matrix
{
int n,a[][];
matrix operator *(const matrix&b) const
{
matrix c;c.n=n;memset(c.a,,sizeof(c.a));
for (int i=;i<n;i++)
for (int j=;j<;j++)
for (int k=;k<;k++)
c.a[i][j]=(c.a[i][j]+ksc(a[i][k],b.a[k][j],P))%P;
return c;
}
}f,a;
signed main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5118.in","r",stdin);
freopen("bzoj5118.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
n=ksm(,read(),P-);
f.n=;f.a[][]=,f.a[][]=;
a.n=;a.a[][]=,a.a[][]=a.a[][]=a.a[][]=;
for (;n;n>>=,a=a*a) if (n&) f=f*a;
cout<<f.a[][]<<endl;
}
return ;
}
BZOJ5118 Fib数列2(矩阵快速幂)的更多相关文章
- HDU 4549 M斐波那契数列(矩阵快速幂)
题目链接:M斐波那契数列 题意:$F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]$.给定$a,b,n$,求$F[n]$. 题解:暴力打表后发现$ F[n]=a^{fib(n-1)} ...
- M斐波那契数列(矩阵快速幂+费马小定理)
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)
M斐波那契数列 Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other) Total Submi ...
- NowCoder数列(矩阵快速幂变式)
时间限制 3000 ms 内存限制 32768 KB 代码长度限制 100 KB 题目描述 NowCoder最近在研究一个数列: * F(0) = 7 * F(1) = 11 * F(n) = F(n ...
- 洛谷P1349 广义斐波那契数列(矩阵快速幂)
P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...
- 算法设计与分析 1.2 不一样的fibonacci数列 (矩阵快速幂思想)
题目描述 Winder 最近在学习 fibonacci 数列的相关知识.我们都知道 fibonacci 数列的递推公式是F(n) = F(n - 1) + F(n - 2)(n >= 2 且 n ...
- P1962 斐波那契数列 【矩阵快速幂】
一.题目 P1962 斐波那契数列 二.分析 比较基础的递推式转换为矩阵递推,这里因为$n$会超出$int$类型,所以需要用矩阵快速幂加快递推. 三.AC代码 1 #include <bits/ ...
- 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导
来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...
- 洛谷P1939【模板】矩阵加速(数列)+矩阵快速幂
思路: 这个 a[1]=a[2]=a[3]=1 a[x]=a[x-3]+a[x-1] (x>3) 可以想成: [a(n) ] [1 0 1] [a(n-1) ] [a(n-1) ] = ...
- 洛谷P1962 斐波那契数列 (矩阵快速幂)
学了矩阵,练一下手... 1 #include<bits/stdc++.h> 2 typedef long long ll; 3 const ll mod=1e9+7; 4 using n ...
随机推荐
- Open-Drain&Push-Pull
在配置GPIO(General Purpose Input Output)管脚的时候,常会见到两种模式:开漏(open-drain,漏极开路)和推挽(push-pull).对此两种模式,有何区别和联系 ...
- iframe的简单使用方法
1.父页面调用子页面的元素(a代表iframe的id或者class,b代表子页面) $('a').contents().find("b") 2.子页面调用父页面的元素(c代表父页面 ...
- [PLC]ST语言七:MOV_SMOV_CML_BMOV_FMOV_XCH_BCD_BIN
一:MOV/SMOV/CML/BMOV/FMOV/XCH/BCD/BIN 说明:简单的顺控指令不做其他说明. (MOV)控制要求:无 (MOV)编程梯形图: (MOV)结构化编程ST语言: (*传送指 ...
- 使用proxyee-down解决百度云下载限速问题
1.在下面页面安装HTTP下载器 https://github.com/proxyee-down-org/proxyee-down#%E4%B8%8B%E8%BD%BD 2.安装switchy插件 h ...
- 脚本处理iOS的Crash日志
背景 当我们打包app时,可以选择生成对应的符号表,其保存 16 进制函数地址映射信息,通过给定的函数起始地址和偏移量,可以对应函数具体信息以供分析. 所以我们拿到测试给的闪退日志(.crash)时, ...
- Daily Scrumming 2015.10.22(Day 3)
今明两天任务表 Member Today’s Task Tomorrow’s Task 江昊 学习rails ActiveRecord 购买.注册域名 继续学习rails ActiveRecord 数 ...
- Linux 下Web环境搭建————redis
1.安装编译工具(yum -y install make gcc gcc-c++ ncurses-devel)2 2.安装tcl依赖 yum -y install tcl 3.上传redis安装包并解 ...
- [建树(非二叉树)] 1106. Lowest Price in Supply Chain (25)
1106. Lowest Price in Supply Chain (25) A supply chain is a network of retailers(零售商), distributors( ...
- Python入门:字符串的分片与索引、字符串的方法
这是关于Python的第3篇文章,主要介绍下字符串的分片与索引.字符串的方法. 字符串的分片与索引: 字符串可以用过string[X]来分片与索引.分片,简言之,就是从字符串总拿出一部分,储存在另一个 ...
- Excel作为数据源TesTNG做数据驱动完整代码
说明:EXCEL 支持xls 和xlsx 俩种格式 : 已经过测试 ! package main.java; import org.apache.poi.ss.usermodel.*; import ...