BZOJ3157/BZOJ3516 国王奇遇记(矩阵快速幂/数学)
由二项式定理,(m+1)k=ΣC(k,i)*mi。由此可以构造矩阵转移,将mi*ik全部塞进去即可,系数即为组合数*m。复杂度O(m3logn),因为大常数喜闻乐见的T掉了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 202
#define P 1000000007
int n,m,C[N][N];
struct matrix
{
int n,a[N][N];
matrix operator *(const matrix&b) const
{
matrix c;c.n=n;memset(c.a,,sizeof(c.a));
for (register int i=;i<n;i++)
for (register int j=;j<N;j++)
for (register int k=;k<N;k++)
c.a[i][j]=(c.a[i][j]+1ll*a[i][k]*b.a[k][j]%P)%P;
return c;
}
}f,a;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3157.in","r",stdin);
freopen("bzoj3157.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read()+,m=read();
C[][]=;
for (int i=;i<=m;i++)
{
C[i][]=C[i][i]=;
for (int j=;j<i;j++)
C[i][j]=(C[i-][j-]+C[i-][j])%P;
}
a.n=m+;
for (int i=;i<=m;i++)
for (int j=;j<=i;j++)
a.a[j][i]=1ll*m*C[i][j]%P;
a.a[m][m+]=a.a[m+][m+]=;
f.n=;f.a[][]=;
for (;n;n>>=,a=a*a) if (n&) f=f*a;
cout<<f.a[][m+];
return ;
}
考虑更神的完全想不到的推导:(直接搬了)
就可以做到O(m2)了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 2010
#define P 1000000007
int n,m,C[N][N],f[N];
int ksm(int a,int k)
{
if (k==) return ;
int tmp=ksm(a,k>>);
if (k&) return 1ll*tmp*tmp%P*a%P;
else return 1ll*tmp*tmp%P;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3157.in","r",stdin);
freopen("bzoj3157.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
C[][]=;
for (int i=;i<=m;i++)
{
C[i][]=C[i][i]=;
for (int j=;j<i;j++)
C[i][j]=(C[i-][j-]+C[i-][j])%P;
}
if (m==) {cout<<(1ll*n*(n+)>>)%P;return ;}
f[]=1ll*m*(ksm(m,n)-)%P*ksm(m-,P-)%P;
for (int i=;i<=m;i++)
{
f[i]=1ll*ksm(n,i)*ksm(m,n+)%P;
for (int j=;j<i;j++)
if (i-j&) f[i]=(f[i]-1ll*C[i][j]*f[j]%P+P)%P;
else f[i]=(f[i]+1ll*C[i][j]*f[j]%P)%P;
f[i]=1ll*f[i]*ksm(m-,P-)%P;
}
cout<<f[m];
return ;
}
甚至可以做到O(m)。不觉得能看懂了。
BZOJ3157/BZOJ3516 国王奇遇记(矩阵快速幂/数学)的更多相关文章
- LightOJ 1070 Algebraic Problem:矩阵快速幂 + 数学推导
题目链接:http://lightoj.com/volume_showproblem.php?problem=1070 题意: 给你a+b和ab的值,给定一个n,让你求a^n + b^n的值(MOD ...
- HDU 3117 Fibonacci Numbers( 矩阵快速幂 + 数学推导 )
链接:传送门 题意:给一个 n ,输出 Fibonacci 数列第 n 项,如果第 n 项的位数 >= 8 位则按照 前4位 + ... + 后4位的格式输出 思路: n < 40时位数不 ...
- 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导
来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...
- zhx's contest (矩阵快速幂 + 数学推论)
zhx's contest Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) To ...
- 【BZOJ4126】【BZOJ3516】【BZOJ3157】国王奇遇记 线性插值
题目描述 三倍经验题. 给你\(n,m\),求 \[ \sum_{i=1}^ni^mm^i \] \(n\leq {10}^9,1\leq m\leq 500000\) 题解 当\(m=1\)时\(a ...
- bzoj3157 3516 国王奇遇记
Description Input 共一行包括两个正整数N和M. Output 共一行为所求表达式的值对10^9+7取模的值. 特判m=1 m≠1时: 设S[u]=sigma(i^u*m^i) m*S ...
- bzoj3157国王奇遇记(秦九韶算法+矩乘)&&bzoj233AC达成
bz第233题,用一种233333333的做法过掉了(为啥我YY出一个算法来就是全网最慢的啊...) 题意:求sigma{(i^m)*(m^i),1<=i<=n},n<=10^9,m ...
- 【BZOJ3157/3516】国王奇遇记(数论)
[BZOJ3157/3516]国王奇遇记(数论) 题面 BZOJ3157 BZOJ3516 题解 先考虑怎么做\(m\le 100\)的情况. 令\(f(n,k)=\displaystyle \sum ...
- bzoj3157: 国王奇遇记
emmm...... 直接看题解好了: BZOJ-3157. 国王奇遇记 – Miskcoo's Space O(m)不懂扔掉 总之,给我们另一个处理复杂求和的方法: 找到函数之间的递推公式! 这里用 ...
随机推荐
- 如何在忘记mysql的登录密码时更改mysql登录的密码(window及linux)
最近一直在边学习边开发java项目,理所当然的就少不了跟数据库打交道了,但是有时候就会脑子一短路,把mysql的登录密码给忘记了,这个时候我们又很急切的需要进到数据库中查看数据,那这个时候要怎么才能改 ...
- opengl坐标系统
概述 为了将坐标从一个坐标系变换到另一个坐标系,我们需要用到几个变换矩阵,最重要的几个分别是模型(Model).观察(View).投影(Projection)三个矩阵.我们的顶点坐标起始于局部空间(L ...
- 2018NOIP爆0记第二弹之day1
出门进了电梯 白底黑字的告示上只有一句话 善待你一生. 湖上的白天鹅和白鹭远远厮混成一点,抱着玻璃杯里装着的小菊花,又慢悠悠溜达去了实验楼. t1 原本写过原题,结果考场上死去活来也只搞出了个nlog ...
- linux运维升级路线
运维工程师是从一个呆逼进化为苦逼再成长为牛逼的过程,前提在于你要能忍能干能拼,还要具有敏锐的嗅觉感知前方潮流变化.如:今年大数据,人工智能比较火……(相对表示就是 Python 比较火) 之前写过运维 ...
- python-gevent模块(自动切换io的协程)
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 import gevent def foo() ...
- Hyperledger Fabric服务器配置及修改Docker容器卷宗存储根目录/位置
Hyperledger Fabric节点服务器对存储空间的消耗还是比较大的,在我实际生产体验的过程中,每一条请求数据大概仅2K左右,但实际占用空间远不止这点,每个节点都会对Block及链进行保存维护, ...
- golang -- 字符串就地取反
字符串 定义 在golang中字符串是一种不可变的字节序列,它可以包含任意的数据,包括0值字节,但主要是人类可以阅读的文本.golang中默认字符串被解读为utf-8编码的Unicode码点(文字符号 ...
- Python更新库
查看系统里过期的python库,可以用pip命令 [root@vnode33 sim-enb-sgi]# pip list #列出所有安装的库 Package Version ------------ ...
- Cosplay之孩子的妈咪
很荣幸的担任“孩子妈妈”的角色,站在父母的角度去思考怎样的一个四则运算的APP才算是符合要求,可以受到广大家长的喜爱.不外乎有这样一些功能:1.可以随时的给孩子出题目,而且可以很快的得出正确答案.分析 ...
- pktgen-dpdk 运行 run.py 报错 Config file 'default' not found 解决方法
pktgen 操作手册:http://pktgen-dpdk.readthedocs.io/en/latest/getting_started.html 执行到这一步时: $ cd <Pktge ...