2734: [HNOI2012]集合选数

链接

分析:

  转化一下题意。

  1 3 9 27...

  2 6 18 54...

  4 12 36 108...

  8 24 72 216...

  ...

  写成这样的矩阵阵后,那么题意就是不能选相邻的点,求方案数。可以知道行不超过18,列不超过11,然后状压dp即可。

  发现5在这个矩阵中没有出现,于是可以在构造a[1][1]=5的矩阵,利用乘法原理求出相乘。同样地,构成a[1][1]为没有出现的数的矩阵,相乘。

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int mod = ; int a[][], b[], f[][], n;
bool vis[]; inline void add(int &x,int y) { x += y; if (x >= mod) x -= mod; }
int Calc(int x) {
memset(b, , sizeof(b));
a[][] = x;
for (int i = ; i <= ; ++i)
if ((a[i - ][] << ) <= n) a[i][] = a[i - ][] << ;
else a[i][] = n + ;
for (int i = ; i <= ; ++i)
for (int j = ; j <= ; ++j)
if (a[i][j - ] * <= n) a[i][j] = a[i][j - ] * ;
else a[i][j] = n + ;
for (int i = ; i <= ; ++i)
for (int j = ; j <= ; ++j)
if (a[i][j] <= n) b[i] += ( << (j - )), vis[a[i][j]] = ;
for (int i = ; i <= ; ++i)
for (int j = ; j <= b[i]; ++j) f[i][j] = ;
f[][] = ;
for (int i = ; i < ; ++i)
for (int s = ; s <= b[i]; ++s)
if (f[i][s])
for (int t = ; t <= b[i + ]; ++t)
if ((s & t) == && (t & (t >> )) == ) add(f[i + ][t], f[i][s]);
return f[][];
} int main() {
n = read(); LL ans = ;
for (int i = ; i <= n; ++i)
if (!vis[i]) ans = 1ll * ans * Calc(i) % mod;
cout << ans;
return ;
}

2734: [HNOI2012]集合选数的更多相关文章

  1. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  2. 2734: [HNOI2012]集合选数 - BZOJ

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

  3. bzoj 2734: [HNOI2012]集合选数

    题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...

  4. 【刷题】BZOJ 2734 [HNOI2012]集合选数

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

  5. BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...

  6. BZOJ 2734: [HNOI2012]集合选数 [DP 状压 转化]

    传送门 题意:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足若 x 在该子集中,则 2x 和 3x 不能在该子集中的子集的个数(只需输出对 1,000,000,001 ...

  7. 【BZOJ】2734: [HNOI2012]集合选数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2734 考虑$N=4$的情况: \begin{bmatrix} 1&3 &X ...

  8. bzoj 2734 [HNOI2012]集合选数 状压DP+预处理

    这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #inclu ...

  9. BZOJ_2734_[HNOI2012]集合选数_构造+状压DP

    BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...

随机推荐

  1. java:通过Calendar类正确计算两日期之间的间隔

    在开发Android应用时偶然需要用到一个提示用户已用天数的功能,从实现上来看无非就是持久化存入用户第一次使用应用的时间firstTime(通过SharedPreferences .xml.sqlit ...

  2. 阿里云ECS服务器环境搭建 ubuntu 16.04 图形界面的安装

    https://blog.csdn.net/zwq912318834/article/details/80528374

  3. handsontable 和 echarts都定义了require方法,初始化时冲突了,怎么办?

    echarts初始化时报这个错误. require.config is not a function  方案一: 让其中一方的初始化不依赖于 require即可 1.去掉 var testDrowEc ...

  4. 循环while 和 continue

    while 1: print("行动吧") # 组成:while 条件: #条件为真,则执行语句块.之后再回去判断条件是否为真,再执行....till条件为假为止. 语句块 # 条 ...

  5. Ubuntu通过Pyenv管理python版本

    网上安装使用Pyenv的教程很多,但是实测有很多教程有坑,经过多家比较发现下面的教程可用,内容全面,与大家分享. 首先安装pyenv全家桶 curl -L https://raw.githubuser ...

  6. 将Python打包成可执行文件exe的心路历程

    导言: 我们有时候需要将做好的Python程序打包成为一个exe , 方便我们使用,查找了资料发现 pyinstaller .py2exe,最后还是选择的pyinstaller,用的时候踩过了挺多的坑 ...

  7. [转]HBase高可用性的新阶段

    From:http://m.csdn.net/article_pt.html?arcid=2823943 Apache HBase是一个面向线上服务的数据库,其原生支持Hadoop的特性,使其成为那些 ...

  8. 我的开源项目——Jerry

    在日常工作中,经常会碰到一些问题,比如数字金额要写成千分位形式(1234 -> 123,4.00).要写成汉字大写形式(123 -> 壹佰贰拾叁圆),又比如要进行 cookie 读写操作, ...

  9. jstorm知识整理

    最近在做一个jstorm的程序.我的jstorm程序消费一个kafka主题,根据数据逻辑判断需要往下游哪几个kafka主题的生产者发送. 1.bolt的execute(Tuple input)方法每次 ...

  10. BZOJ4571:[SCOI2016]美味(主席树,贪心)

    Description 一家餐厅有 n 道菜,编号 1...n ,大家对第 i 道菜的评价值为 ai(1≤i≤n).有 m 位顾客,第 i 位顾客的期望值为 bi,而他的偏好值为 xi . 因此,第 ...