南昌邀请赛网络赛 D.Match Stick Game

题目传送门

题目就会给你一个长度为n的字符串,其中\(1<n<100\)。这个字符串是一个表达式,只有加减运算符,然后输入的每一个字符都是可以由若干个火柴棒拼接而成的。

现在在不改变每个数的位数,数的总数以及运算符的个数的前提下,可以对火柴棒重新拼接。询问最后可以拼接出来的最大值是多少。

这个自己看下题目可能要清楚一些= =

 

每一个字符都是由若干个火柴棒构成的,我们可以考虑类似于背包的思路来求解。

因为每个数的位数最后都没发生变化,所以我们可以预处理出\(f[i][j]\)以及\(g[i][j]\),分别表示\(i\)位数由\(j\)根火柴构成的最大/最小值。

因为这里除开火柴棒个数之外还涉及到了加减号,所以我们定义\(dp(i,j,0/1)\)为前\(i\)个数字,用了\(j\)根火柴棒,并且当前这个数字前面是\(-\)还是\(+\)。

由于数据范围比较小,所以考虑加和减两种情况进行合理转移就行了。

详见代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1005;
int n, T;
char s[N] ;
int len[N] ;
ll dp[105][N][2], f[105][N], g[105][N];
int trans1[10] = {0, 0, 1, 7, 4, 5, 9, 8} ;
int trans2[10] = {0, 0, 1, 7, 4, 2, 0, 8} ;
int num ;
int main() {
cin >> T;
for(int i = 1; i <= 10; i++)
for(int j = 2; j < N; j++) {
g[i][j] = 1e14;
f[i][j] = f[i][j - 1] ;
for(int k = 2; k <= 7; k++) {
if(j - k >= 0) f[i][j] = max(f[i - 1][j - k] * 10 + trans1[k], f[i][j]) ;
}
}
for(int i = 1; i <= 10; i++)
for(int j = 2; j < N; j++) {
if(i == 1) {
g[i][j] = 1;
continue ;
}
g[i][j] = g[i][j - 1] ;
for(int k = 2; k <= 7; k++) {
if(j - k >= 0) g[i][j] = min(1ll * g[i - 1][j - k] * 10 + 1ll * trans2[k], g[i][j]) ;
}
}
while(T--) {
memset(dp, 0, sizeof(dp)) ;
scanf("%d", &n);
scanf("%s", s + 1);
int cnt = 0, x = 0, num = 0;
for(int i = 1; i <= n; i++) {
if(s[i] == '+' || s[i] == '-') {
len[++num] = cnt ;
cnt = 0;
if(s[i] == '+') x += 2;
else x += 1;
} else {
cnt++;
if(s[i] == '1') x += 2 ;
else if(s[i] == '7') x += 3 ;
else if(s[i] == '4') x += 4 ;
else if(s[i] == '5' || s[i] == '2' || s[i] == '3') x += 5;
else if(s[i] == '0' || s[i] == '6' || s[i] == '9') x += 6;
else x += 7;
}
}
len[++num] = cnt;
for(int i = 2; i <= x; i++) dp[1][i][0] = dp[1][i][1] = f[len[1]][i] ;
for(int i = 2; i <= num; i++) {
for(int j = 2; j <= x; j++) {
for(int k = 2; k <= j; k++) {
if(j - k - 2 >= 2) {
dp[i][j][1] = max(dp[i][j][1], dp[i - 1][j - k - 2][1] + f[len[i]][k]) ;
dp[i][j][1] = max(dp[i][j][1], dp[i - 1][j - k - 2][0] + f[len[i]][k]) ;
}
if(j - k - 1 >= 2) {
dp[i][j][0] = max(dp[i][j][0], dp[i - 1][j - k - 1][0] - g[len[i]][k]) ;
dp[i][j][0] = max(dp[i][j][0], dp[i - 1][j - k - 1][1] - g[len[i]][k]) ; }
}
}
}
ll ans = 0;
ans = max(ans, max(dp[num][x][0], dp[num][x][1])) ;
cout << ans << '\n';
}
return 0 ;
}

南昌邀请赛网络赛 D.Match Stick Game(dp)的更多相关文章

  1. 2019 ICPC南昌邀请赛网络赛比赛过程及题解

    解题过程 中午吃饭比较晚,到机房lfw开始发各队的账号密码,byf开始读D题,shl电脑卡的要死,启动中...然后听到谁说A题过了好多,然后shl让blf读A题,A题blf一下就A了.然后lfw读完M ...

  2. POJ-2796 & 2019南昌邀请赛网络赛 I. 区间最大min*sum

    http://poj.org/problem?id=2796 https://nanti.jisuanke.com/t/38228 背景 给定一个序列,对于任意区间,min表示区间中最小的数,sum表 ...

  3. [2019南昌邀请赛网络赛D][dp]

    https://nanti.jisuanke.com/t/38223 Xiao Ming recently indulges in match stick game and he thinks he ...

  4. icpc 南昌邀请赛网络赛 Max answer

    就是求区间和与区间最小值的积的最大值 但是a[i]可能是负的 这就很坑 赛后看了好多dalao的博客 终于a了 这个问题我感觉可以分为两个步骤 第一步是对于每个元素 以它为最小值的最大区间是什么 第二 ...

  5. icpc 南昌邀请赛网络赛 Subsequence

    题目链接:https://nanti.jisuanke.com/t/38232 就是判断输入是不是子序列 没想到贡献了将近十几次罚时..........可以说是菜的真实了 用cin cout超时了 改 ...

  6. 2019 ICPC南昌邀请赛 网络赛 K. MORE XOR

    说明 \(\oplus x​\)为累异或 $ x^{\oplus(a)}​$为异或幂 题意&解法 题库链接 $ f(l,r)=\oplus_{i=l}^{r} a[i]$ $ g(l,r)=\ ...

  7. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  8. 2019ICPC南昌邀请赛网络赛 I. Max answer (单调栈+线段树/笛卡尔树)

    题目链接 题意:求一个序列的最大的(区间最小值*区间和) 线段树做法:用单调栈求出每个数两边比它大的左右边界,然后用线段树求出每段区间的和sum.最小前缀lsum.最小后缀rsum,枚举每个数a[i] ...

  9. 2019南昌邀请赛网络赛:J distance on the tree

    1000ms 262144K   DSM(Data Structure Master) once learned about tree when he was preparing for NOIP(N ...

随机推荐

  1. 记一次centos6升级salt-minion启动失败的问题

    记一次centos6升级salt-minion启动失败的问题 作者:耀耀 blog:https://www.liuyao.me 一.起因 升级Salt-minion后 使用/etc/init.d/sa ...

  2. [Notice]博客地址转移 vitostack.com

    个人博客地址转移至vitostack.com 这里可能不会经常更新. 欢迎访问新地址.

  3. Vue 实例详解与生命周期

    Vue 实例详解与生命周期 Vue 的实例是 Vue 框架的入口,其实也就是前端的 ViewModel,它包含了页面中的业务逻辑处理.数据模型等,当然它也有自己的一系列的生命周期的事件钩子,辅助我们进 ...

  4. 2017秋软工 —— 本周PSP

    1. PSP 2. PSP饼图 3. 累计进度条 4. 累计折线图

  5. 必应词典手机版(IOS版)与有道词典(IOS版)之问卷分析

    我们制定了一个调查问卷: 1.年龄分布: 2.地域分布: 3.是否用过必应词典? 对于必应词典还是没用过的人数更多. 4.是否用过有道词典? 有道词典的使用率更高一点. 5.对于必应的基本功能给几分? ...

  6. OO前三次作业简单总结

    随着几周的进行,OO课堂已经经历过三次课下作业.在这三次作业中,我被扣了一些分数,也发现了自己几次作业中一些存在的共同的问题. 首先以第三次作业为例分析,我程序的类图如下 一共九个类,其中Als_sc ...

  7. JavaScript下的new操作符做了什么?

    可以参考知乎的一篇文章:https://zhuanlan.zhihu.com/p/23987456 参考网上其他人的文章,new发生了以下操作 参考MDN:https://developer.mozi ...

  8. Python实现客观赋权法

    本文从阐述Python实现客观赋权法的四种方式: 一. 熵权法 二. 因子分析权数法(FAM) 三. 主成分分析权数法(PCA) 四. 独立性权系数法 Python实现客观赋权法,在进行赋权前,先导入 ...

  9. 【百度】大型网站的HTTPS实践(一)——HTTPS协议和原理

    大型网站的HTTPS实践(一)——HTTPS协议和原理 原创 网络通信/物联网 作者:AIOps智能运维 时间:2018-11-09 15:07:39  349  0 前言 百度于2015年上线了全站 ...

  10. swusec的构想,顺便送开学福利——校园网一号多登录演示

    前言: 我不是什么大牛,我只想通过我的努力,打造swu网络安全爱好者的圈子.期待你加入. swusec是什么? swusec (SouthWestUniversity SecurityTeam),西南 ...