【十大经典数据挖掘算法】系列

  1. C4.5
  2. K-Means
  3. SVM
  4. Apriori
  5. EM
  6. PageRank
  7. AdaBoost
  8. kNN
  9. Naïve Bayes
  10. CART

1. 引言

k-means与kNN虽然都是以k打头,但却是两类算法——kNN为监督学习中的分类算法,而k-means则是非监督学习中的聚类算法;二者相同之处:均利用近邻信息来标注类别。

聚类是数据挖掘中一种非常重要的学习流派,指将未标注的样本数据中相似的分为同一类,正所谓“物以类聚,人以群分”嘛。k-means是聚类算法中最为简单、高效的,核心思想:由用户指定k个初始质心(initial centroids),以作为聚类的类别(cluster),重复迭代直至算法收敛。

2. 基本算法

在k-means算法中,用质心来表示cluster;且容易证明k-means算法收敛等同于所有质心不再发生变化。基本的k-means算法流程如下:

选取k个初始质心(作为初始cluster);
repeat:
对每个样本点,计算得到距其最近的质心,将其类别标为该质心所对应的cluster;
重新计算k个cluser对应的质心;
until 质心不再发生变化

对于欧式空间的样本数据,以平方误差和(sum of the squared error, SSE)作为聚类的目标函数,同时也可以衡量不同聚类结果好坏的指标:

SSE=k∑i=1∑x∈Cidist(x,ci)

 

表示样本点x到cluster Ci 的质心 ci 距离平方和;最优的聚类结果应使得SSE达到最小值。

下图中给出了一个通过4次迭代聚类3个cluster的例子:

k-means存在缺点:

  • k-means是局部最优的,容易受到初始质心的影响;比如在下图中,因选择初始质心不恰当而造成次优的聚类结果(SSE较大):

  • 同时,k值的选取也会直接影响聚类结果,最优聚类的k值应与样本数据本身的结构信息相吻合,而这种结构信息是很难去掌握,因此选取最优k值是非常困难的。

3. 优化

为了解决上述存在缺点,在基本k-means的基础上发展而来二分 (bisecting) k-means,其主要思想:一个大cluster进行分裂后可以得到两个小的cluster;为了得到k个cluster,可进行k-1次分裂。算法流程如下:

初始只有一个cluster包含所有样本点;
repeat:
从待分裂的clusters中选择一个进行二元分裂,所选的cluster应使得SSE最小;
until 有k个cluster

上述算法流程中,为从待分裂的clusters中求得局部最优解,可以采取暴力方法:依次对每个待分裂的cluster进行二元分裂(bisect)以求得最优分裂。二分k-means算法聚类过程如图:

从图中,我们观察到:二分k-means算法对初始质心的选择不太敏感,因为初始时只选择一个质心。

4. 参考资料

[1] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining.
[2] Xindong Wu, Vipin Kumar, The Top Ten Algorithms in Data Mining.

【十大经典数据挖掘算法】k的更多相关文章

  1. 【十大经典数据挖掘算法】PageRank

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 我特地把PageRank作为[十大经 ...

  2. 【十大经典数据挖掘算法】SVM

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector ...

  3. 【十大经典数据挖掘算法】Naïve Bayes

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 朴素贝叶斯(Naïve Bayes) ...

  4. 【十大经典数据挖掘算法】C4.5

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(de ...

  5. 【十大经典数据挖掘算法】k-means

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽 ...

  6. 【十大经典数据挖掘算法】Apriori

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 关联分析 关联分析是一类非常有 ...

  7. 【十大经典数据挖掘算法】kNN

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 顶级数据挖掘会议ICDM ...

  8. 【十大经典数据挖掘算法】CART

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 前言 分类与回归树(Class ...

  9. 【十大经典数据挖掘算法】EM

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 极大似然 极大似然(Maxim ...

随机推荐

  1. GlusterFS + lagstash + elasticsearch + kibana 3 + redis日志收集存储系统部署 01

    因公司数据安全和分析的需要,故调研了一下 GlusterFS + lagstash + elasticsearch + kibana 3 + redis 整合在一起的日志管理应用: 安装,配置过程,使 ...

  2. 【转】 虚拟机Linux不能上网简单有效的解决办法(NAT模式下)

    前提条件: a. 确保VMware Network Adapter for VMnet8 处于启用状态,这个是NAT网络模式要用的虚拟网卡.注意这个网卡的IP地址,不需要做手动设置 b. 确保 VMw ...

  3. 爬虫--PyQuery

    什么是PyQuery? PyQuery 初始化 字符串初始化 from pyquery import PyQuery as pq html=""" <div> ...

  4. 深入理解Spring系列之五:BeanDefinition装载

    转载 https://mp.weixin.qq.com/s/1_grvpJYe8mMIAnebMdz9Q 接上篇<深入理解Spring系列之四:BeanDefinition装载前奏曲>,进 ...

  5. Linux下搜索命令

    linux下用于查找文件的5个命令,有需要的朋友可以参考下.包括find,whereis,locate,which与type. linux下用于查找文件的5个命令,有需要的朋友可以参考下.包括find ...

  6. think php模板的使用

    {include file="../application/public/header.html"}<!-- Jumbotron --><div class=&q ...

  7. STL中heap相关函数

    heap并不是属于STL中的containers,而是在<algorithm>下提供了相关的函数 make_heap,sort_heap,pop_heap,push_heap 函数的说明: ...

  8. 安装 Xamarin for Visual Studio

    总得来说,Xamarin 有“联网自动安装”和“手动安装”两种方式. 说明:本文涉及得资源链接都是官网的,同时,在 我的网盘 也有相关备份. 现在,我就以 Windows 为例来大概说明……(-=-我 ...

  9. PHP取整函数ceil,floor,round,intval的区别

    ceil — 进一法取整 float ceil ( float $value ) 返回不小于 value 的下一个整数,value 如果有小数部分则进一位.ceil() 返回的类型仍然是 float, ...

  10. python中__dict__与dir()的区别

    在python中__dict__与dir()都可以返回一个对象的属性,区别在于: __dict__是对象的一个属性,而dir()是一个built-in的方法: __dict__返回一个对象的属性名和值 ...