题目传送门

Semi-prime H-numbers

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10871   Accepted: 4881

Description

This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.

An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.

As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.

For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.

Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it's the product of three H-primes.

Input

Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.

Output

For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.

Sample Input

21
85
789
0

Sample Output

21 0
85 5
789 62

Source


  分析:

  一道素数筛法的变式题。

  把素数筛法改一下,预处理出所有答案,然后直接输出每个答案就行了。

  Code:

//It is made by HolseLee on 2nd Sep 2018
//POJ3292
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<iomanip>
#include<algorithm>
using namespace std; const int N=1e6+;
int n,ans[N],q[N],top;
bool no[N],yes[N]; int main()
{
ios::sync_with_stdio(false);
for(int i=; i<N; i+=) {
if(no[i])continue;
q[++top]=i;
for(int j=*i; j<N; j+=i*) no[j]=;
}
for(int i=; i<=top; ++i)
for(int j=; j<=i && q[i]*q[j]<N; ++j)
yes[q[i]*q[j]]=;
for(int i=; i<N; ++i)
ans[i]=ans[i-]+yes[i]; while() {
cin>>n; if(!n) break;
cout<<n<<" "<<ans[n]<<"\n";
}
return ;
}

POJ3292 Semi-prime H-numbers [数论,素数筛]的更多相关文章

  1. Codeforces 385C - Bear and Prime Numbers(素数筛+前缀和+hashing)

    385C - Bear and Prime Numbers 思路:记录数组中1-1e7中每个数出现的次数,然后用素数筛看哪些能被素数整除,并加到记录该素数的数组中,然后1-1e7求一遍前缀和. 代码: ...

  2. UVALive-3399-Sum of Consecutive Prime Numbers(素数筛,暴力)

    原题链接 写个素数筛暴力打表一波就AC了: #include <iostream> using namespace std; const int N = 10001; int i, j, ...

  3. LightOJ-1259 Goldbach`s Conjecture 数论 素数筛

    题目链接:https://cn.vjudge.net/problem/LightOJ-1259 题意 给一个整数n,问有多少对素数a和b,使得a+b=n 思路 素数筛 埃氏筛O(nloglogn),这 ...

  4. 题解报告:poj 2689 Prime Distance(区间素数筛)

    Description The branch of mathematics called number theory is about properties of numbers. One of th ...

  5. HDU 1016 Prime Ring Problem (素数筛+DFS)

    题目链接 题意 : 就是把n个数安排在环上,要求每两个相邻的数之和一定是素数,第一个数一定是1.输出所有可能的排列. 思路 : 先打个素数表.然后循环去搜..... #include <cstd ...

  6. Bi-shoe and Phi-shoe LightOJ - 1370(数论+素数筛)

    题目链接:https://vjudge.net/problem/LightOJ-1370 题意:给你N个欧拉函数值,找出每一个大于等于该欧拉函数值的数,并且要求相加和最小. 题解:因为素数i的欧拉函数 ...

  7. [POJ268] Prime Distance(素数筛)

    /* * 二次筛素数 * POJ268----Prime Distance(数论,素数筛) */ #include<cstdio> #include<vector> using ...

  8. codeforces 414A A. Mashmokh and Numbers(素数筛)

    题目链接: A. Mashmokh and Numbers time limit per test 1 second memory limit per test 256 megabytes input ...

  9. POJ2689:Prime Distance(大数区间素数筛)

    The branch of mathematics called number theory is about properties of numbers. One of the areas that ...

  10. POJ 3126 Prime Path (bfs+欧拉线性素数筛)

    Description The ministers of the cabinet were quite upset by the message from the Chief of Security ...

随机推荐

  1. base64解码

    网络传输经常用base64编码的数据,因此我们需要将其解码成正常字符集合. base64.h #ifdef __cplusplus extern "C" { #endif char ...

  2. HTML5-Y音频与视频

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  3. 最小割dp Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) E

    http://codeforces.com/contest/724/problem/E 题目大意:有n个城市,每个城市有pi件商品,最多能出售si件商品,对于任意一队城市i,j,其中i<j,可以 ...

  4. Python学习笔记 (十二)偏函数

    摘抄:https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/0014318447438 ...

  5. 重构改善既有代码设计--重构手法04:Replace Temp with Query (以查询取代临时变量)

    所谓的以查询取代临时变量:就是当你的程序以一个临时变量保存某一个表达式的运算效果.将这个表达式提炼到一个独立函数中.将这个临时变量的所有引用点替换为对新函数的调用.此后,新函数就可以被其他函数调用. ...

  6. 48、面向对象中super的作用?

    什么是super? super() 函数是用于调用父类(超类)的一个方法. super 是用来解决多重继承问题的,直接用类名调用父类方法在使用单继承的时候没问题,但是如果使用多继承,会涉及到查找顺序( ...

  7. 超简便安装mysql

    CentOS7默认数据库是mariadb,配置等用着不习惯,因此决定改成mysql,但是CentOS7的yum源中默认好像是没有mysql的.为了解决这个问题,我们要先下载mysql的repo源. 1 ...

  8. SPI协议及其工作原理浅析【转】

    转自:http://www.laoliu-soft.net/category/tech_chap/tech_linux/ 一.概述. SPI, Serial Perripheral Interface ...

  9. Ubuntu 17.10 用 apt 搭建 lamp 环境、安装 phpmyadmin、redis 服务+扩展、mysql 扩展、开启错误提示、配置虚拟主机

    2018-02-24 13:50:30 更新: 个人喜欢相对原生又不太麻烦,所以用 apt 构建环境.不过,最近使用到现在记得出现过了 3 次 apache 或 mysql 服务器无法启动或无法连接的 ...

  10. 初学Memcached安装及使用【转】

    1.yum install memcached安装memecached 2.chkconfig memcached on设置memcached开机启动 3.service memcached star ...