由于只有3行,因此只会会换行2次,假设$x, y$分别为这两次的换行点

那么答案为$S[1][x] +S[2][y] - S[2][x - 1] + S[3][n] - S[3][y - 1]$

其中,$S[i]$表示第$i$行的前缀和

令$a[x] = S[1][x] - S[2][x - 1], b[y] = S[2][y] - S[3][y - 1]$

考虑枚举$x$,那么问题转化为询问在一堆数中求一个数$k$使得$v (= a[x] + S[3][n]) + k \;mod\;p$最大

分两种情况考虑,第一种$v + k \in [v, mod - 1]$,那么$k \in [0, mod - k - 1]$,并且$k$越大越好

第二种不如第一种好,但有可能不得不选,$v + k \in [1, v - 1]$,同样时$k$越大越好

也就是说,需要一种支持插入,查询前驱和最大值的数据结构,$set$就可以

注:倒叙枚举$x$,可以做到不删除

复杂度$O(n \log n)$

#include <set>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; extern inline char gc() {
static char RR[], *S = RR + , *T = RR + ;
if(S == T) fread(RR, , , stdin), S = RR;
return *S ++;
}
inline int read() {
int p = , w = ; char c = gc();
while(c > '' || c < '') { if(c == '-') w = -; c = gc(); }
while(c >= '' && c <= '') p = p * + c - '', c = gc();
return p * w;
} #define ll long long
#define ri register int
#define sid 200050 int n, ans, mod;
int s[][sid], a[sid], b[sid]; set <int> ex; int main() {
n = read(); mod = read();
for(ri i = ; i <= ; i ++)
for(ri j = ; j <= n; j ++)
s[i][j] = (s[i][j - ] + read()) % mod; for(ri i = ; i <= n; i ++) a[i] = (s[][i] - s[][i - ] + mod) % mod;
for(ri i = ; i <= n; i ++) b[i] = (s[][i] - s[][i - ] + mod) % mod; int der = s[][n]; ex.insert();
for(ri i = n; i >= ; i --) {
ex.insert(-b[i]);
int v = (der + a[i]) % mod;
int p = *ex.lower_bound(-(mod - - v));;
if(p == ) ans = max(ans, (v - *(++ ex.begin())) % mod);
else ans = max(ans, v + -p);
} printf("%d\n", ans);
return ;
}

51nod1624 取余最长路 前缀和 + set的更多相关文章

  1. 1624 取余最长路(set)

    1624 取余最长路 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 佳佳有一个n*m的带权矩阵,她想从(1,1)出发走到(n,m)且只能往右往下移动,她能得到的娱 ...

  2. 51 nod 1624 取余最长路 思路:前缀和 + STL(set)二分查找

    题目: 写这题花了我一上午时间. 下面是本人(zhangjiuding)的思考过程: 首先想到的是三行,每一行一定要走到. 大概是这样一张图 每一行长度最少为1.即第一行(i -1) >= 1, ...

  3. 51nod 1624 取余最长路

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1624 题意: 思路:因为一共只有3行,所以只需要确定第一行和第二行的转折 ...

  4. ZZNU-oj-2141:2333--【O(N)求一个数字串能整除3的连续子串的个数,前缀和数组+对3取余组合数找规律】

    2141: 2333 题目描述 “别人总说我瓜,其实我一点也不瓜,大多数时候我都机智的一批“ 宝儿姐考察你一道很简单的题目.给你一个数字串,你能判断有多少个连续子串能整除3吗? 输入 多实例输入,以E ...

  5. #leetcode刷题之路14-最长公共前缀

    编写一个函数来查找字符串数组中的最长公共前缀. 如果不存在公共前缀,返回空字符串 "". 示例 1: 输入: ["flower","flow" ...

  6. poj 3349:Snowflake Snow Snowflakes(哈希查找,求和取余法+拉链法)

    Snowflake Snow Snowflakes Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 30529   Accep ...

  7. 【HDU3721】枚举+最长路

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3721 题意:给你一颗n个节点n-1条边的树,每条边都有一个权值,现在让你任意移动一条边然后把这条边连接 ...

  8. lintcode :最长公共前缀

    题目 最长公共前缀 给k个字符串,求出他们的最长公共前缀(LCP) 样例 在 "ABCD" "ABEF" 和 "ACEF" 中,  LCP ...

  9. 高效求幂取余 算法,复杂度 log(n)

    做TopCoder SRM 576 D2 L3 题目时,程序有个地方需要对一个数大量求幂并取余,导致程序运行时间很长,看了Editoral之后,发现一个超级高效的求幂并取余的算法,之前做System ...

随机推荐

  1. 【leetcode 简单】第五十题 位1的个数

    编写一个函数,输入是一个无符号整数,返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为汉明重量). 示例 : 输入: 11 输出: 3 解释: 整数 11 的二进制表示为 00000000000 ...

  2. JS中函数void()

    <a href="javascript:void(0)">hello</a>/* * JS中函数void()的运用大体是这种新式; * void()是运算符 ...

  3. redis基础之redis-cluster(集群)(七)

    前言 redis的主流高可用集群模式为redis-cluster.从redis3.0+版本后开始支持,自带集群管理工具redis-trib.rb. 安装redis 参考:https://www.cnb ...

  4. awk正则匹配nginx日志【原创】

    查看网页访问代码不为200和30x所有行的内容 awk '{if($9!~/200|30*/) print $0}' /app/logs/http_access.log 或 awk '$9!~/200 ...

  5. 91.Decode Ways---dp

    题目链接:https://leetcode.com/problems/decode-ways/description/ 题目大意:将给出的字符串解码,问有多少种解码方式.解码按照“ABC...Z&qu ...

  6. NEERC2014

    NEERC2014 A - Alter Board 题目描述:给出一个\(n \times m\)的国际象棋棋盘,每次选定一个矩形,使得矩形中的每个格子的颜色翻转,求出最少次数的方案使得最终棋盘只有一 ...

  7. sed的额外用法(网摘)

    #在我开始动手写一个一个的脚本的时候才会看到更多的用法 1. 在某行的前一行或后一行添加内容(前提是要确定行的内容) # 匹配行前加 sed -i '/allow/ideny' httpd.conf ...

  8. falsk注册etcd

    部署web服务集群时,我们希望能动态调整集群大小.当一个新的节点启动时,可以将自己的信息注册给master, 让master把它加入到集群里, 关闭之后也可以把自己从集群中删除.我这里使用的是flas ...

  9. leetcode 之Remove Duplicates from Sorted Array(1)

    删除数组中的重复元素并返回新数组的个数 思路:保留不同的元素即可. int removeDeplicates(int A[], int n) { ; ; i < n; i++) { if (A[ ...

  10. 20165301实验二java面向对象程序设计

    20165301实验二java面向对象程序设计 实验目的与要求(提交点一): 参考http://www.cnblogs.com/rocedu/p/6371315.html#SECUNITTEST完成单 ...