Educational Codeforces Round 12 F. Four Divisors 求小于x的素数个数(待解决)
F. Four Divisors
题目连接:
http://www.codeforces.com/contest/665/problem/F
Description
If an integer a is divisible by another integer b, then b is called the divisor of a.
For example: 12 has positive 6 divisors. They are 1, 2, 3, 4, 6 and 12.
Let’s define a function D(n) — number of integers between 1 and n (inclusive) which has exactly four positive divisors.
Between 1 and 10 only the integers 6, 8 and 10 has exactly four positive divisors. So, D(10) = 3.
You are given an integer n. You have to calculate D(n).
Input
The only line contains integer n (1 ≤ n ≤ 1011) — the parameter from the problem statement.
Output
Print the only integer c — the number of integers between 1 and n with exactly four divisors.
Sample Input
10
Sample Output
3
Hint
题意
给你n,问你n以内有多少个数的因子数恰好有4个
题解:
数显然就两种可能pq或者qqq,其中p,q都是素数
然后qqq这个可以在n^1/3的复杂度莽出来
pq的话,我们枚举小的那个,然后只要能够快速求出count([n/p])就好了
这玩意儿我扒了一份版……
研究研究……
代码
#include<bits/stdc++.h>
using namespace std;
#define MAXN 100
#define MAXM 100010
#define MAXP 666666
#define MAX 10000010
#define clr(ar) memset(ar, 0, sizeof(ar))
#define read() freopen("lol.txt", "r", stdin)
#define dbg(x) cout << #x << " = " << x << endl
#define chkbit(ar, i) (((ar[(i) >> 6]) & (1 << (((i) >> 1) & 31))))
#define setbit(ar, i) (((ar[(i) >> 6]) |= (1 << (((i) >> 1) & 31))))
#define isprime(x) (( (x) && ((x)&1) && (!chkbit(ar, (x)))) || ((x) == 2))
using namespace std;
namespace pcf{
long long dp[MAXN][MAXM];
unsigned int ar[(MAX >> 6) + 5] = {0};
int len = 0, primes[MAXP], counter[MAX];
void Sieve(){
setbit(ar, 0), setbit(ar, 1);
for (int i = 3; (i * i) < MAX; i++, i++){
if (!chkbit(ar, i)){
int k = i << 1;
for (int j = (i * i); j < MAX; j += k) setbit(ar, j);
}
}
for (int i = 1; i < MAX; i++){
counter[i] = counter[i - 1];
if (isprime(i)) primes[len++] = i, counter[i]++;
}
}
void init(){
Sieve();
for (int n = 0; n < MAXN; n++){
for (int m = 0; m < MAXM; m++){
if (!n) dp[n][m] = m;
else dp[n][m] = dp[n - 1][m] - dp[n - 1][m / primes[n - 1]];
}
}
}
long long phi(long long m, int n){
if (n == 0) return m;
if (primes[n - 1] >= m) return 1;
if (m < MAXM && n < MAXN) return dp[n][m];
return phi(m, n - 1) - phi(m / primes[n - 1], n - 1);
}
long long Lehmer(long long m){
if (m < MAX) return counter[m];
long long w, res = 0;
int i, a, s, c, x, y;
s = sqrt(0.9 + m), y = c = cbrt(0.9 + m);
a = counter[y], res = phi(m, a) + a - 1;
for (i = a; primes[i] <= s; i++) res = res - Lehmer(m / primes[i]) + Lehmer(primes[i]) - 1;
return res;
}
}
long long solve(long long n){
int i, j, k, l;
long long x, y, res = 0;
for (i = 0; i < pcf::len; i++){
x = pcf::primes[i], y = n / x;
if ((x * x) > n) break;
res += (pcf::Lehmer(y) - pcf::Lehmer(x));
}
for (i = 0; i < pcf::len; i++){
x = pcf::primes[i];
if ((x * x * x) > n) break;
res++;
}
return res;
}
int main(){
pcf::init();
long long n, res;
cin>>n;
printf("%lld\n",solve(n));
return 0;
}
Educational Codeforces Round 12 F. Four Divisors 求小于x的素数个数(待解决)的更多相关文章
- Educational Codeforces Round 40 F. Runner's Problem
Educational Codeforces Round 40 F. Runner's Problem 题意: 给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) ...
- 求小于n的素数个数
本文是对 LeetCode Count Primes 解法的探讨. 题目: Count the number of prime numbers less than a non-negative num ...
- Educational Codeforces Round 12 E. Beautiful Subarrays trie求两异或值大于等于k对数
E. Beautiful Subarrays One day, ZS the Coder wrote down an array of integers a with elements a1, ...
- Educational Codeforces Round 51 F. The Shortest Statement(lca+最短路)
https://codeforces.com/contest/1051/problem/F 题意 给一个带权联通无向图,n个点,m条边,q个询问,询问两点之间的最短路 其中 m-n<=20,1& ...
- Educational Codeforces Round 7 F. The Sum of the k-th Powers 拉格朗日插值法
F. The Sum of the k-th Powers 题目连接: http://www.codeforces.com/contest/622/problem/F Description Ther ...
- Educational Codeforces Round 14 - F (codeforces 691F)
题目链接:http://codeforces.com/problemset/problem/691/F 题目大意:给定n个数,再给m个询问,每个询问给一个p,求n个数中有多少对数的乘积≥p 数据范围: ...
- CF# Educational Codeforces Round 3 F. Frogs and mosquitoes
F. Frogs and mosquitoes time limit per test 2 seconds memory limit per test 512 megabytes input stan ...
- Educational Codeforces Round 12 E. Beautiful Subarrays 预处理+二叉树优化
链接:http://codeforces.com/contest/665/problem/E 题意:求规模为1e6数组中,连续子串xor值大于等于k值的子串数: 思路:xor为和模2的性质,所以先预处 ...
- [Educational Codeforces Round 7]F. The Sum of the k-th Powers
FallDream dalao找的插值练习题 题目大意:给定n,k,求Σi^k (i=1~n),对1e9+7取模.(n<=10^9,k<=10^6) 思路:令f(n)=Σi^k (i=1~ ...
随机推荐
- VueJS 轻松支持 JSX 配置
使用: babel-preset-vue-app TODO
- 64_m3
molequeue-doc-0.8.0-2.20161222giteb397e.fc26.no..> 05-Apr-2017 10:04 451570 molequeue-libs-0.8.0- ...
- 19.Remove Nth Node From End of List---双指针
题目链接 题目大意:删除单链表中倒数第n个节点.例子如下: 法一:双指针,fast指针先走n步,然后slow指针与fast一起走,记录slow前一个节点,当fast走到链表结尾,slow所指向的指针就 ...
- TGPPen 宽度的理解
procedure TForm4.Button1Click(Sender: TObject); var g: TGPGraphics; p: TGPPen; begin g := TGPGraphic ...
- 大理石在哪儿(UVa10474)
题目具体描述见:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=835&a ...
- 微信小程序之wepy自动化架构搭建(fly+wepy-plugin-replace)
前言 本文章秉着自动化工程项目的思想搭建的,基础架子完全按照wepy官网搭建,在基础上增加配置达到自动化项目.新增动flxio拦截器自动处理接口,新增根据环境变量来改变运行时的参数. Fly.js 小 ...
- spring_150909_hibernate_id_table
1.新建java工程:spring_150909_hibernate_id_table,如下图所示: 2.建DogPet实体类: package com.spring.model; import ja ...
- 基于Redis实现——分布式锁与实现
实现 使用的是jedis来连接Redis. 实现思想 获取锁的时候,使用setnx加锁,并使用expire命令为锁添加一个超时时间,超过该时间则自动释放锁,锁的value值为一个随机生成的UUID,通 ...
- 洛谷P1528 切蛋糕 [搜索,二分答案]
题目传送门 切蛋糕 题目描述 Facer今天买了n块蛋糕,不料被信息组中球球等好吃懒做的家伙发现了,没办法,只好浪费一点来填他们的嘴巴.他答应给每个人留一口,然后量了量每个人口的大小.Facer有把刀 ...
- Python函数-闭包的概念
一个函数和它的环境变量合在一起,就构成了一个闭包(closure).在Python中,所谓的闭包是一个包含有环境变量取值的函数对象.环境变量取值被保存在函数对象的__closure__属性中.比如下面 ...