$ \color{#0066ff}{ 题目描述 }$

小R和B神正在玩一款游戏。这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的。换句话说,游戏的地图是一棵有N个节点的树。

游戏中有一种道具叫做侦查守卫,当一名玩家在一个点上放置侦查守卫后,它可以监视这个点以及与这个点的距离在D以内的所有点。这里两个点之间的距离定义为它们在树上的距离,也就是两个点之间唯一的简单路径上所经过边的条数。在一个点上放置侦查守卫需要付出一定的代价,在不同点放置守卫的代价可能不同。

现在小R知道了所有B神可能会出现的位置,请你计算监视所有这些位置的最小代价。

\(\color{#0066ff}{输入格式}\)

第一行包含两个正整数N和D,分别表示地图上的点数和侦查守卫的视野范围。约定地图上的点用1到N的整数编号。

第二行N个正整数,第i个正整数表示在编号为i的点放置侦查守卫的代价Wi。保证Wi<=1000。

第三行一个正整数M,表示B神可能出现的点的数量。保证M<=N。

第四行M个正整数,分别表示每个B神可能出现的点的编号,从小到大不重复地给出。

接下来N-1行,每行包含两个正整数U,V,表示在编号为U的点和编号为V的点之间有一条无向边。

\(\color{#0066ff}{输出格式}\)

仅一行一个整数,表示监视所有B神可能出现的点所需要的最小代价

\(\color{#0066ff}{输入样例}\)

12 2
8 9 12 6 1 1 5 1 4 8 10 6
10
1 2 3 5 6 7 8 9 10 11
1 3
2 3
3 4
4 5
4 6
4 7
7 8
8 9
9 10
10 11
11 12

\(\color{#0066ff}{输出样例}\)

10

\(\color{#0066ff}{数据范围与提示}\)

对于所有的数据,N<=500000,D<=20

\(\color{#0066ff}{题解}\)

对于这种在树上覆盖的问题,是一个比较经典的树形DP模型

状态\(f[i][j]\)表示以i为根子树从i向下有j层未覆盖的最小代价,j可以为负数,如果是负数,就是子树全覆盖,并向外覆盖一些层

所以我们再开一个\(g[i][j]\)表示以i为根子树全覆盖,并且向外覆盖了j层的方案数

首先,对于必覆盖点,初始化就是\(f[i][0]=g[i][0]=val[i]\)

注意当\(j\ge 1\)时,f覆盖的范围是不包括当前点的(j层未覆盖),但是g包括了(i向外j全覆盖)

所以\(g[i][j]\)也要初始化一下

考虑转移

对于f,显然有\(f[x][j] = min\{f[x][j-1]\}\)

还有就是子树统计\(f[x][j]+=f[y][j-1]\)

对于g,显然有\(g[x][i]=min\{g[x][i+1]\}\)

还有,就是考虑x的外面由哪个子树覆盖,这个覆盖包括了x子树内部,\(g[y][j]\)覆盖了\(f[x][j]\)未覆盖的j层

\(g[x][j]=min\{f[x][j+1]+g[y][j+1],f[y][j]+g[x][j]\}\)

答案就是\(f[1][0]\)

#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int maxn = 5e5 + 100;
const int inf = 0x7fffffff;
int f[maxn][25], g[maxn][25], val[maxn];
int n, d, m;
bool vis[maxn];
struct node {
int to;
node *nxt;
node(int to = 0, node *nxt = NULL): to(to), nxt(nxt) {}
};
node *head[maxn];
void add(int from, int to) { head[from] = new node(to, head[from]); }
void dfs(int x, int fa) {
if(vis[x]) f[x][0] = g[x][0] = val[x];
for(int i = 1; i <= d; i++) g[x][i] = val[x];
g[x][d + 1] = inf;
for(node *i = head[x]; i; i = i->nxt) {
if(i->to == fa) continue;
dfs(i->to, x);
for(int j = 0; j <= d; j++) g[x][j] = std::min(g[x][j] + f[i->to][j], g[i->to][j + 1] + f[x][j + 1]);
for(int j = d - 1; j >= 0; j--) g[x][j] = std::min(g[x][j], g[x][j + 1]);
f[x][0] = g[x][0];
for(int j = 1; j <= d; j++) f[x][j] += f[i->to][j - 1];
for(int j = 1; j <= d; j++) f[x][j] = std::min(f[x][j], f[x][j - 1]);
}
} int main() {
n = in(), d = in();
for(int i = 1; i <= n; i++) val[i] = in();
m = in();
for(int i = 1; i <= m; i++) vis[in()] = true;
int x, y;
for(int i = 1; i < n; i++) x = in(), y = in(), add(x, y), add(y, x);
dfs(1, 0);
printf("%d\n", f[1][0]);
return 0;
}

P3267 [JLOI2016/SHOI2016]侦察守卫的更多相关文章

  1. 洛谷 P3267 - [JLOI2016/SHOI2016]侦察守卫(树形 dp)

    洛谷题面传送门 经典题一道,下次就称这种"覆盖距离不超过 xxx 的树形 dp"为<侦察守卫模型> 我们考虑树形 \(dp\),设 \(f_{x,j}\) 表示钦定了 ...

  2. 洛谷 P3267 [JLOI2016/SHOI2016]侦察守卫(树形dp)

    题面 luogu 题解 树形\(dp\) \(f[x][y]表示x的y层以下的所有点都已经覆盖完,还需要覆盖上面的y层的最小代价.\) \(g[x][y]表示x子树中所有点都已经覆盖完,并且x还能向上 ...

  3. [JLOI2016/SHOI2016]侦察守卫(树形dp)

    小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的.换句话说,游戏的地图是一棵有N个节点的树. 游戏中有一种道具叫做侦查守卫,当一名玩家在一个点 ...

  4. [JLOI2016/SHOI2016]侦察守卫

    嘟嘟嘟 这道题可以说是[HNOI2003]消防局的设立的升级版.距离从2改为了d. 辛亏d只有20,这也就是一个切入点. 令f[u][j]表示u四周 j - 1的距离需要被覆盖,g[u][j]表示u可 ...

  5. BZOJ4557:[JLOI2016/SHOI2016]侦察守卫——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4557 小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点, ...

  6. Luogu 3267 [JLOI2016/SHOI2016]侦察守卫

    以后要记得复习鸭 BZOJ 4557 大佬的博客 状态十分好想,设$f_{x, i}$表示以覆盖完$x$为根的子树后还能向上覆盖$i$层的最小代价,$g_{x, i}$表示以$x$为根的子树下深度为$ ...

  7. Luogu3267 [JLOI2016/SHOI2016]侦察守卫 (树形DP)

    树形DP,一脸蒙蔽.看了题解才发现它转移状态与方程真不愧神题! \(f[x][y]\)表示\(x\)的\(y\)层以下的所有点都已经覆盖完,还需要覆盖上面的\(y\)层的最小代价. \(g[x][y] ...

  8. DP学习记录Ⅰ

    DP学习记录Ⅱ 前言 状态定义,转移方程,边界处理,这三部分想好了,就问题不大了.重点在状态定义,转移方程是基于状态定义的,边界处理是方便转移方程的开始的.因此最好先在纸上写出自己状态的意义,越详细越 ...

  9. bzoj 4557: [JLoi2016]侦察守卫 树归

    bzoj 4557: [JLoi2016]侦察守卫 设f[x][j]表示覆盖以x为根的子树的所有应该被覆盖的节点,并且以x为根的子树向下j层全部被覆盖的最小代价. 设g[x][j]表示与x距离大于j全 ...

随机推荐

  1. 测试URL

    http://localhost:8080/dmonitor-webapi/monitor/vm/342?r=1410331220921&indexes=cpu&indexes=mem ...

  2. cakephp跳转到指定的错误页面

    第一步:修改core.php 第二步:创建AppExceptionRender.php文件 参考:https://blog.jordanhopfner.com/2012/09/11/custom-40 ...

  3. 汉诺塔(hanoi)

    汉诺塔代码: def hanoi(n,x,y,z): if n == 1: print(x,'-->',z) else: hanoi(n-1,x,z,y) print(x,'-->',z) ...

  4. jdk1.7 环境变量配置

    Windows系统中设置环境变量如下图右击“我的电脑”,选择“属性”. 点击“高级”选项卡,选择“环境变量”.  在“系统环境变量”中设置上面提到的3个环境变量,如果变量已经存在就选择“编辑”,否则选 ...

  5. 实践作业4:Web测试实践(小组作业)每日任务记录5

    (一)今日任务更新 本次小组作业均已完成! 本组文件最终pdf文件(文件稍大,请耐心等待加载):https://files.cnblogs.com/files/ruanshuo170204/Web测试 ...

  6. DapperExtensions 使用教程

    最近搭建一个框架,使用dapper来做数据库访问,数据是sql server2012,支持多个数据库.事务.orm.ado.net原生操作方式,非常方便. 使用dapper的原因网上有很多文章说明,这 ...

  7. es学习-重建索引

    url:POST http://127.0.0.1:9200/_reindex 参数: {"source":{"index":"myes"} ...

  8. sql server锁检测

    有时候系统运行老感觉效率不高,并且有时候sql还有超时的报错,但是并发量并不高.通过排查定位sql是否有执行效率问题 -- 开事务, 以保持锁 BEGIN TRAN -- 更新 update tabl ...

  9. ScreenCapture-drupal 7.34-ckeditor4x整合教程

    1.1. drupal 7x-ckeditor4x 插件下载:Drupal 7x, 1.1.1. 安装ckeditor4x 下载插件 说明:下载并解压 CKEditor4x插件:https://yun ...

  10. arcgis android 中shapefile的加载

    前言 本文为大家分享arcgis android 中shapefile的加载,默认你有java环境,懂一定的android基础知识,默认你已经安装android studio.如缺乏以上环境和知识,请 ...