清北学堂(2019 4 30 ) part 3
今天总的讲些算法,会了的话...看上去好厉害的样子:
1.老朋友动态规划DP:
DP重点:
1.边界条件,开头不需处理的数据,比如斐波那契数列中的第一二项
2.转移方程,后面的项需要根据前面几项求出自身值的方程(等式)
套路:
1.定状态,
2.写方程,
3.敲代码
三种用法:
1.顺着推,
2.倒着推,
3.记忆化搜索,
举个栗子——斐波那契:
1.倒着推:比较简单,只写方程:f[n]=f[n-1]+f[n-2]
2.顺着推:代码
#include<bits/stdc++.h>
using namespace std;
int n;
int f[];
int main(){
scanf("%d",&n);
f[]=;
f[]=;
for(int i=;i<n;i++){
f[i+]+=f[i];
f[i+]+=f[i];
}
cout<<f[n]<<endl;
return ;
}
中间核心部分思想在于最新一项去更新后项,因为由递归公式可得当前f[a]只对f[a+1],f[a+1]产生贡献,而倒着推思想在于用已经推过的值去更新最新一项。
3.记忆化搜索:代码:
#include<bits/stdc++.h>
using namespace std;
int f[];
bool vis[]; //用这个bool数组记录是否推过
inline int dfs(int n){
if(n==) return ;
if(n==) return ;
if(vis[n]) return f[n];
f[n]=dfs(n-)+dfs(n-);
return f[n];
}
int n;
int main(){
scanf("%d",&n);
printf("%d\n",dfs(n));
return ;
}
听说记搜能做出来的动规题,前两种一定能做出来...
分类:
1.数位dp
按照十进制每一位dp,自己写的代码(用动规思想写出的伪高精...):
#include<bits/stdc++.h>
using namespace std;
int xn[],xm[];
int n,m;
int v[];
int main(){
scanf("%d%d",&m,&n);
int tn=,tm=;
while(n>){
xn[tn++]=n%;
n/=;
}
while(m>){
xm[tm++]=m%;
m/=;
}
for(int i=tn-;i>=;i--)
v[i]=v[i+]*+xn[i]-xm[i];
printf("%d",v[]+);
return ;
}
大佬的:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int f[][],z[],l,r;
int solve(int x){
int n=;
while(x){
z[n]=x%;
x/=;
n++;
}//存一下x的十进制表示
n--;
memset(f,,sizeof(f));//要做两个动态规划
f[n+][]=;
for(int i=n;i>=;i--)
for(int j=;j<=;++j){
if(j==){
for(int k=;k<=;++k)
f[i][]+=f[i+][j];
}
else{
for(int k=;k<=z[i];++k){
if(k==z[i]) f[i][]+=f[i+][j];
else f[i][]+=f[i+][j];
}
}
}
return f[][]+f[][];
} int main(){
cin>>l>>r;
cout<<solve(r)-solve(l-)<<endl;
return ;
}
主要思想是分类讨论,讨论每次处理位数是否相等
2.树形dp
例题:求n个节点的树有几个节点(exm?!)
我其实想用前向星遍历求结果来着,还是练练dp吧,
主要思想:
根据子树考虑
每个叶节点的子树节点个数为1,非叶节点的为所有子树的节点数+1(自身)
伪代码:
inline void dfs(int p){
for(int i=tail[p];i;i=ed[i].next){
dfs(ed[i].to);
f[p]+=f[ed[i].to];
}
f[p]++;
}
大概正确吧...
树的直径:
给定一棵树,树中每条边都有一个权值,树中两点之间的距离定义为连接两点的路径边权之和。树中最远的两个节点之间的距离被称为树的直径,连接这两点的 路径被称为树的最长链。后者通常也可称为直径,即直径是一个数值概念,也可代指一条路径
现给一棵树,求其直径
思路:设f[p][0]为p点的最长路,f[p][1]为p点的次长路,分别保存。
需根据子树推导,对每个节点进行讨论,对于叶节点,其没有子树,故无法进行讨论,对于其他节点,则讨论其子树,寻找每个子节点的最长路及次长路,然后 按照方程取:
f[p(当前节点)][0]=max(f[p1(子节点1)][0],f[p2][0],f[p3][0],..........,f[pn][0])+1
f[p(当前节点)][1]=max(f[p1(子节点1)][0],f[p2][0],f[p3][0],.....(加特判不算上一步中取到的点).....,f[pn][0])+1 //因为要去最长路径,所以显然要取最长路径,而不是 次长路,此处容易误认为次长路需从次长路中选。
每次处理时用一个变量“sum”取max来维护路长总和,以保证结果一定是最长最优,毕竟难免出现以下这种鬼图的存在...(绘图网站:???)
所以根节点并不一定是最长路径(直径)经过的点,所以要对每个点进行处理,万一直径的根节点在哪个深山老林里...
3.状压dp(听说是最难的)
一般空间O(n2*2n)
时间O(2n*n)
一般接受n<=20.
(顺便说一下:n<=1000,O(n2))
(n<=100,O(n3))
(n<=105,O(n log n))
(n<=106,O(n))
(n<=12,不要考虑复杂度了上暴搜吧)
TSP问题:
平面上有n个点,问把每个点都走一次的最短路径,并且只能为链,不能为树(更不能是图),如下:
状压(状态压缩),用一个数表示一个集合,比如表示上图的路径
用二进制实现,如下:
对于7 6 5 4 3 2 1,保存路径状态为1 4 6
即为0 1 0 1 0 0 1,
因每个元素对于一个状态来说只有在其中或不在两种状态,可用1与0表示,而对于不同元素
其对应二进制位有独特的位置与权值,所以每一种状态都有唯一的十进制数与其对应
其状态用f[s][i]表示,s为路径压缩结果,即已经走过的点的集合对应十进制数,j为当前停留点
4.区间dp
从区间中枚举断点,合并左右,找最优方案
例题:
合并石子
代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn=,inf=0x7fffffff/;
int f1[maxn][maxn],f2[maxn][maxn];
int a[maxn],sum[maxn],n,ans1,ans2;
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
a[i+n]=a[i];
}
for(int i=;i<=n*;i++){
sum[i]=sum[i-]+a[i];
f2[i][i]=;
f1[i][i]=;
}
for(int l=;l<=n;l++){
for(int i=;i<=*n-l+;i++){
int j=i+l-;
f1[i][j]=inf;
f2[i][j]=;
for(int k=i;k<j;k++){
f1[i][j]=min(f1[i][j],f1[i][k]+f1[k+][j]);
f2[i][j]=max(f2[i][j],f2[i][k]+f2[k+][j]);
}
f1[i][j]+=sum[j]-sum[i-];
f2[i][j]+=sum[j]-sum[i-];
}
ans1=inf;
ans2=;
for(int i=;i<=n;i++){
ans1=min(ans1,f1[i][i+n-]);
ans2=max(ans2,f2[i][i+n-]);
}
}
cout<<ans1<<endl<<ans2;
return ;
}
5.其他(没有套路,只能自己推转移方程)
肥肠常烤非常常考
例题:数字三角形(终于有道做过的了QAQ)
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath> //怀念不用万用文件头的日子
using namespace std;
int n;
int v[][];
int ans=;
int main(){
cin>>n;
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
cin>>v[i][j];
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
v[i][j]=max(v[i-][j-],v[i-][j])+v[i][j]; //因为每项只会“被”左上一项或上面一项产生贡献,只考虑那两项
for(int i=;i<=n;i++)
ans=max(ans,v[n][i]);
cout<<ans;
return ;
}
例题*改
对于每项v[i][j]%m,求其最大
多开一个维度,[k],k表示%m剩下的值,dp方程如下:
if(f[i-1][j-1][(k-a[i][j])%m]||f[i-1][j][(k-a[i][j])%m])
f[i][j][k]=true; //这里f数组为bool,结果直接输出k
清北学堂(2019 4 30 ) part 3的更多相关文章
- 清北学堂2019.8.10 & 清北学堂2019.8.11 & 清北学堂2019.8.12
Day 5 杨思祺(YOUSIKI) 今天的难度逐渐上升,我也没做什么笔记 开始口胡正解 今天的主要内容是最小生成树,树上倍增和树链剖分 最小生成树 Prim 将所有点分为两个集合,已经和点 1 连通 ...
- 清北学堂2019.7.18 & 清北学堂2019.7.19
Day 6 钟皓曦 经典题目:石子合并 可以合并任意两堆,代价为数量的异或(^)和 f[s]把s的二进制所对应石子合并成一堆所花代价 枚举s的子集 #include<iostream> u ...
- 清北学堂2017NOIP冬令营入学测试P4745 B’s problem(b)
清北学堂2017NOIP冬令营入学测试 P4745 B's problem(b) 时间: 1000ms / 空间: 655360KiB / Java类名: Main 背景 冬令营入学测试 描述 题目描 ...
- 清北学堂2017NOIP冬令营入学测试 P4744 A’s problem(a)
清北学堂2017NOIP冬令营入学测试 P4744 A's problem(a) 时间: 1000ms / 空间: 655360KiB / Java类名: Main 背景 冬令营入学测试题,每三天结算 ...
- 济南清北学堂游记 Day 1.
快住手!这根本不是暴力! 刷了一整天的题就是了..上午三道题的画风还算挺正常,估计是第一天,给点水题做做算了.. rqy大佬AK了上午的比赛! 当时我t2暴力写挂,还以为需要用啥奇怪的算法,后来发现, ...
- 清明培训 清北学堂 DAY1
今天是李昊老师的讲授~~ 总结了一下今天的内容: 1.高精度算法 (1) 高精度加法 思路:模拟竖式运算 注意:进位 优化:压位 程序代码: #include<iostream>#in ...
- 7月清北学堂培训 Day 3
今天是丁明朔老师的讲授~ 数据结构 绪论 下面是天天见的: 栈,队列: 堆: 并查集: 树状数组: 线段树: 平衡树: 下面是不常见的: 主席树: 树链剖分: 树套树: 下面是清北学堂课程表里的: S ...
- <知识整理>2019清北学堂提高储备D2
简单数据结构: 一.二叉搜索树 1.前置技能: n/1+n/2+……+n/n=O(n log n) (本天复杂度常涉及) 2.入门题引入: N<=100000. 这里多了一个删除的操作,因此要 ...
- <知识整理>2019清北学堂提高储备D3
全天动态规划入门到入坑... 一.总概: 动态规划是指解最优化问题的一类算法,考察方式灵活,也常是NOIP难题级别.先明确动态规划里的一些概念: 状态:可看做用动态规划求解问题时操作的对象. 边界条件 ...
随机推荐
- RESTFUL 概念
1. 什么是REST REST全称是Representational State Transfer,中文意思是表述(编者注:通常译为表征)性状态转移. 它首次出现在2000年Roy Fielding的 ...
- 软件工程第二次作业(Android Studio利用Junit进行单元测试)
一.开发工具的安装和运行 1.安装 由于我的电脑之前就安装好了Android Studio,就不再重装了.在这里就给出几条安装过程中需要注意的地方吧: 安装包最好在官网下载已经带有Android SD ...
- Linux实战教学笔记38:企业级Nginx Web服务优化实战(下)
四,Nginx站点目录及文件URL访问控制 4.1 根据扩展名限制程序和文件访问 Web2.0时代,绝大多数网站都是以用户为中心多的,例如:bbs,blog,sns产品,这几个产品都有一个共同特点,就 ...
- Nginx负载均衡高可用
1. Nginx负载均衡高可用 首先介绍一下Keepalived,它是一个高性能的服务器高可用或热备解决方案,Keepalived主要来防止服务器单点故障的发生问题,可以通过其与Nginx的配合实 ...
- 从0开始用spring boot编写分布式配置中心-peppa
欢迎大家一起来编写peppa github地址: github 交流群: 目前市面上比较流行的分布式配置中心有disconf.apollo,用起来还是比较方便的,然而由于在权限管理这块做得不够好,导致 ...
- spring MVC模式拦截所有入口方法的入参出参打印
import com.alibaba.fastjson.JSONObject; import com.alibaba.fastjson.serializer.SerializerFeature; im ...
- java web框架发展的新趋势--跨界轻型App
“跨界(cross over)在汽车界已然成风,将轿车.SUV.跑车和MPV等多种不同元素融为一体的混搭跨界车型,正在成为汽车设计领域的新趋势.从个人而言,当包容.多元的审美要求和物质要求越来越强烈时 ...
- SqlServer垂直分表 如何减少程序改动
当单表数据太多时,我们可以水平划分,参考 SqlServer 分区视图实现水平分表 ,水平划分可以提高表的一些性能. 而 垂直分表 则相对很少见到和用到,因为这可能是数据库设计上的问题了.如果数据库中 ...
- C#HTML解析利器HtmlAgilityPack
HtmlAgilityPack是一个开源的解析HTML元素的类库,最大的特点是可以通过XPath来解析HMTL,如果您以前用C#操作过XML,那么使用起HtmlAgilityPack也会得心应手.目前 ...
- 修复jqgrid setgridparam postdata 的多次查询条件累加
//根据elements查询出的参数个数的不同,而传递不同个数的查询参数 start var elements = node.attributes.text.split(","); ...