poj-3046-dp
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 6829 | Accepted: 2514 |
Description
Being a bit mathematical, Bessie started wondering. Bessie noted that the hive has T (1 <= T <= 1,000) families of ants which she labeled 1..T (A ants altogether). Each family had some number Ni (1 <= Ni <= 100) of ants.
How many groups of sizes S, S+1, ..., B (1 <= S <= B <= A) can be formed?
While observing one group, the set of three ant families was seen as {1, 1, 2, 2, 3}, though rarely in that order. The possible sets of marching ants were:
3 sets with 1 ant: {1} {2} {3}
5 sets with 2 ants: {1,1} {1,2} {1,3} {2,2} {2,3}
5 sets with 3 ants: {1,1,2} {1,1,3} {1,2,2} {1,2,3} {2,2,3}
3 sets with 4 ants: {1,2,2,3} {1,1,2,2} {1,1,2,3}
1 set with 5 ants: {1,1,2,2,3}
Your job is to count the number of possible sets of ants given the data above.
Input
* Lines 2..A+1: Each line contains a single integer that is an ant type present in the hive
Output
Sample Input
3 5 2 3
1
2
2
1
3
Sample Output
10
Hint
Three types of ants (1..3); 5 ants altogether. How many sets of size 2 or size 3 can be made?
OUTPUT DETAILS:
5 sets of ants with two members; 5 more sets of ants with three members
Source
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
#define LL long long
const LL MOD=;
LL f[][+];
int tot[];
int main()
{
int T,A,S,B;
int i,j,k,n,m;
while(cin>>T>>A>>S>>B){
memset(tot,,sizeof(tot));
for(i=;i<=A;++i){
scanf("%d",&n);
tot[n]++;
}
int cur=;
LL ans=;
f[cur][]=;
for(i=;i<=A;++i) f[cur][i]=; for(i=;i<=T;++i){
cur^=;
f[cur][]=;
for(j=;j<=A;++j){
int tt=j-tot[i]-;
if(j<=tot[i]){
f[cur][j]=(f[cur][j-]+f[cur^][j])%MOD;
}
else{
f[cur][j]=(f[cur][j-]+f[cur^][j]-f[cur^][j--tot[i]]+MOD)%MOD;
}
}
}
ans=(f[cur][B]-f[cur][S-]+MOD)%MOD;
cout<<ans<<endl;
}
return ;
}
poj-3046-dp的更多相关文章
- poj 3046 Ant Counting (DP多重背包变形)
题目:http://poj.org/problem?id=3046 思路: dp [i] [j] :=前i种 构成个数为j的方法数. #include <cstdio> #include ...
- DP:Ant Counting(POJ 3046)
数蚂蚁 题目大意:一只牛想数蚂蚁,蚂蚁分成很多组,每个组里面有很多只蚂蚁,现在问你有多少种组合方式 (说白了就是问1,1,1,...,2...,3...,4...)这些东西有多少种排列组合方式 这一道 ...
- POJ 3046 Ant Counting ( 多重集组合数 && 经典DP )
题意 : 有 n 种蚂蚁,第 i 种蚂蚁有ai个,一共有 A 个蚂蚁.不同类别的蚂蚁可以相互区分,但同种类别的蚂蚁不能相互区别.从这些蚂蚁中分别取出S,S+1...B个,一共有多少种取法. 分析 : ...
- POJ 3046 Ant Counting DP
大致题意:给你a个数字,这些数字范围是1到t,每种数字最多100个,求问你这些a个数字进行组合(不包含重复),长度为s到b的集合一共有多少个. 思路:d[i][j]——前i种数字组成长度为j的集合有多 ...
- poj 3046 Ant Counting——多重集合的背包
题目:http://poj.org/problem?id=3046 多重集合的背包问题. 1.式子:考虑dp[ i ][ j ]能从dp[ i-1 ][ k ](max(0 , j - c[ i ] ...
- hdu 1513 && 1159 poj Palindrome (dp, 滚动数组, LCS)
题目 以前做过的一道题, 今天又加了一种方法 整理了一下..... 题意:给出一个字符串,问要将这个字符串变成回文串要添加最少几个字符. 方法一: 将该字符串与其反转求一次LCS,然后所求就是n减去 ...
- poj 1080 dp如同LCS问题
题目链接:http://poj.org/problem?id=1080 #include<cstdio> #include<cstring> #include<algor ...
- poj 1609 dp
题目链接:http://poj.org/problem?id=1609 #include <cstdio> #include <cstring> #include <io ...
- POJ 1037 DP
题目链接: http://poj.org/problem?id=1037 分析: 很有分量的一道DP题!!! (参考于:http://blog.csdn.net/sj13051180/article/ ...
- Jury Compromise POJ - 1015 dp (标答有误)背包思想
题意:从 n个人里面找到m个人 每个人有两个值 d p 满足在abs(sum(d)-sum(p)) 最小的前提下sum(d)+sum(p)最大 思路:dp[i][j] i个人中 和 ...
随机推荐
- 使用 Task 简化异步编程
.Net 传统异步编程概述 .NET Framework 提供以下两种执行 I/O 绑定和计算绑定异步操作的标准模式: 异步编程模型 (APM),在该模型中异步操作由一对 Begin/End 方法(如 ...
- beego——session模块
session介绍 session是一个独立的模块,即你可以那这个模块应用于其它Go程序中. session模块是用来存储客户端用户,session目前只支持cookie方式的请求,如果客户端不支持c ...
- day6-面向对象
Python 面向对象 Python从设计之初就已经是一门面向对象的语言,正因为如此,在Python中创建一个类和对象是很容易的.本章节我们将详细介绍Python的面向对象编程. 如果你以前没有接触过 ...
- hadoop streaming anaconda python 计算平均值
原始Liunx 的python版本不带numpy ,安装了anaconda 之后,使用hadoop streaming 时无法调用anaconda python , 后来发现是参数没设置好... 进 ...
- AtCoder Regular Contest 080 D - Grid Coloring
地址:http://arc080.contest.atcoder.jp/tasks/arc080_b 题目: D - Grid Coloring Time limit : 2sec / Memory ...
- java.sql.SQLException: Illegal mix of collations (latin1_swedish_ci,IMPLICIT) and (utf8_general_ci,COERCIBLE) for operation '=' 异常处理,及MySQL数据库编码设置
java.sql.SQLException: Illegal mix of collations (latin1_swedish_ci,IMPLICIT) and (utf8_general_ci,C ...
- redis安全设置
1. 设置监听ip为本地和内网ip bind 127.0.0.1 192.168.1.99 ## 可以是多个ip,用空格分割 2. 设置监听端口 port 16379 3. 设置密码 在配置文件中加入 ...
- 十八般武艺之 Runloop
嗯,runloop ,看过,用过.但是有时候突然被问到,总是不能很好的描述给他人,也许是程序员本来口拙的缘故吧.另外,也是对runloop还是理解的不够透彻. 于是乎,决定重新整理一下,加深一下印象. ...
- C#中 哪些是值类型 哪些是引用类型
DateTime属于 结构类型,所以是 值类型 在 C#中 简单类型,结构类型,枚举类型是值类型:其余的:接口,类,字符串,数组,委托都是引用类型
- ES5给出的两个新增的语法糖getter和setter介绍
前言信息: EMCAScript5 简称ES5 ECMAScript是一种由Ecma国际(前身为欧洲计算机制造商协会,英文名称是European Computer Manufacturers Ass ...