【BZOJ4873】[Shoi2017]寿司餐厅

Description

Kiana最近喜欢到一家非常美味的寿司餐厅用餐。每天晚上,这家餐厅都会按顺序提供n种寿司,第i种寿司有一个代号ai和美味度di,i,不同种类的寿司有可能使用相同的代号。每种寿司的份数都是无限的,Kiana也可以无限次取寿司来吃,但每种寿司每次只能取一份,且每次取走的寿司必须是按餐厅提供寿司的顺序连续的一段,即Kiana可以一次取走第1,2种寿司各一份,也可以一次取走第2,3种寿司各一份,但不可以一次取走第1,3种寿司。由于餐厅提供的寿司种类繁多,而不同种类的寿司之间相互会有影响:三文鱼寿司和鱿鱼寿司一起吃或许会很棒,但和水果寿司一起吃就可能会肚子痛。因此,Kiana定义了一个综合美味度di,j(i<j),表示在一次取的寿司中,如果包含了餐厅提供的从第i份到第j份的所有寿司,吃掉这次取的所有寿司后将获得的额外美味度。由于取寿司需要花费一些时间,所以我们认为分两次取来的寿司之间相互不会影响。注意在吃一次取的寿司时,不止一个综合美味度会被累加,比如若Kiana一次取走了第1,2,3种寿司各一份,除了d1,3以外,d1,2,d2,3也会被累加进总美味度中。神奇的是,Kiana的美食评判标准是有记忆性的,无论是单种寿司的美味度,还是多种寿司组合起来的综合美味度,在计入Kiana的总美味度时都只会被累加一次。比如,若Kiana某一次取走了第1,2种寿司各一份,另一次取走了第2,3种寿司各一份,那么这两次取寿司的总美味度为d1,1+d2,2+d3,3+d1,2+d2,3,其中d2,2只会计算一次。奇怪的是,这家寿司餐厅的收费标准很不同寻常。具体来说,如果Kiana一共吃过了c(c>0)种代号为x的寿司,则她需要为这些寿司付出mx^2+cx元钱,其中m是餐厅给出的一个常数。现在Kiana想知道,在这家餐厅吃寿司,自己能获得的总美味度(包括所有吃掉的单种寿司的美味度和所有被累加的综合美味度)减去花费的总钱数的最大值是多少。由于她不会算,所以希望由你告诉她

Input

第一行包含两个正整数n,m,分别表示这家餐厅提供的寿司总数和计算寿司价格中使用的常数。
第二行包含n个正整数,其中第k个数ak表示第k份寿司的代号。
接下来n行,第i行包含n-i+1个整数,其中第j个数di,i+j-1表示吃掉寿司能
获得的相应的美味度,具体含义见问题描述。
N<=100,Ai<=1000

Output

输出共一行包含一个正整数,表示Kiana能获得的总美味度减去花费的总钱数的最大值。

Sample Input

3 1
2 3 2
5 -10 15
-10 15
15

Sample Output

【样例1说明】
在这组样例中,餐厅一共提供了3份寿司,它们的代号依次为a1=2,a2=3,a3=2,计算价格时的常数m=1。在保证每次取寿司都能获得新的美味度的前提下,Kiana一共有14种不同的吃寿司方案:
1.Kiana一个寿司也不吃,这样她获得的总美味度和花费的总钱数都是0,两者相减也是0;
2.Kiana只取1次寿司,且只取第1个寿司,即她取寿司的情况为{[1,1]},这样获得的总美味度为5,花费的总钱数为1-2^2+1*2=6,两者相减为-1;
3.Kiana只取1次寿司,且只取第2个寿司,即她取寿司的情况为{[2,2]},这样获得的总美味度为-10,花费的总钱数为1-3^2+1*3=12,两者相减为-22;
4.Kiana只取1次寿司,且只取第3个寿司,即她取寿司的情况为{[3,3]},这样获得的总美味度为15,花费的总钱数为1*2^2+1*2=6,两者相减为9;
5.Kiana只取1次寿司,且取第1,2个寿司,即她取寿司的情况为{[1,2]},这样获得的总美味度为5+(-10)+(-10)=-1
5,花费的总钱数为(1-2^2+1*2)+(1-3^2+1*3)=18,两者相减为-33;
6.Kiana只取1次寿司,且取第2,3个寿司,即她取寿司的情况为{[2,3]},这样获得的总美味度为(-10)+15+15=20,花费的总钱数为(1-2^2+1*2)+(1*3^2+1*3)=18,两者相减为2;
7.Kiana只取1次寿司,且取第1,2,3个寿司,即她取寿司的情况为{[1,3]},这样获得的总美味度为5+(-10)+15+(-10)+15+15=30,花费的总钱数为(1*2^2+2*2)+(1*3^2+1*3)=20,两者相减为10。
8.Kiana取2次寿司,第一次取第1个寿司,第二次取第2个寿司,即她取寿司的情况为{[1,1],[2,2]},这样获得的总美味度为5+(-10)=-5,花费的总钱数为(1*2^2+1*2)+(1*3^2+1*3)=18,两者相减为-23;
9.Kiana取2次寿司,第一次取第1个寿司,第二次取第3个寿司,即她取寿司的情况为{[1,1],[3,3]},这样获得的总美味度为5+15=20,花费的总钱数为1*2^2+2*2=8,两者相减为12;
10.Kiana取2次寿司,第一次取第2个寿司,第二次取第3个寿司,即她取寿司的情况为{[2,2],[3,3]},这样获得的总美味度为(-10)+15=5,花费的总钱数为(1*2^2+1*2)+(1*3^2+1*3)=18,两者相减为-13;
11.Kiana取2次寿司,第一次取第1,2个寿司,第二次取第3个寿司,即她取寿司的情况为{[1,2],[3,3]},这样获得的总美味度为5+(-10)+(-10)+15=0,花费的总钱数为(1*2^2+2*2)+(1*3^2+1*3)=20,两者相减为-20;
12.Kiana取2次寿司,第一次取第1个寿司,第二次取第2,3个寿司,即她取寿司的情况为{[1,1],[2,3]},这样获得的总美味度为5+(-10)+15+15=25,花费的总钱数为(1-22+2-2)+(1-32+1-3)=20,两者相减为5;
13.Kiana取2次寿司,第一次取第1,2个寿司,第二次取第2,3个寿司,即她取寿司的情况为{[1,2],[2,3]},这样获得的总美味度为5+(-10)+15+(-10)+15=15,花费的总钱数为(1*2^2+2*2)+(1*3^2+1*3)=20,两者相减为-5;
14.Kiana取3次寿司,第一次取第1个寿司,第二次取第2个寿司,第三次取第3个寿司,即她取寿司的情况为{[1,1],[2,2],[3,3]},这样获得的总美味度为5+(-10)+15=10,花费的总钱数为(1*2^2+2*2)+(1*3^2+1*3)=20,两者相减为-10。
所以Kiana会选择方案9,这时她获得的总美味度减去花费的总钱数的值最大为12。

题解:考试的时候一眼就感觉是网络流,然后犹豫了下是最小割还是费用流,大致怎么连边也差不多了,然后就是没看出来是最大权闭合图(因为普通的最小割无法处理负权),最后写了个DFS交上去了~

感觉是时候重新写一篇植物大战僵尸的博客了,连最大权闭合图都忘了~

正题:我们先把d[i][j]列出来(由于样例给的是下三角所以不容易看出来)

5   -10  15
     -10  15
            15

所以当我们取d[i][j]的时候,相当于表格中在d[i][j]左下方的点全都要取,这好像需要连很多边,但其实我们只需要连左边和下面的两个点就可以了(即d[i+1][j]和d[i][j-1]),因为如果取这两个点,其左下角的点一定都取完了

然后根据最大权闭合图的连边方法:

从S向所有正权的点连边,边权为该点权值;
从所有负权的点向T连边,边权为该点权值相反数;
从所有的寿司编号向T连边,边权为m*编号的平方;
从所有的d[i][i]向T连边,边权为编号;
从所有的d[i][i]向该寿司的编号连边,边权为∞;
从所有的d[i][j](i<j)向d[i+1][j]和d[i][j-1]连边,边权为∞;

讲道理代码一点也不长

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
int n,m,cnt,tot,sum,S,T,ans;
int to[1000000],next[1000000],val[1000000],head[10000];
int map[110][110],num[110][110],A[1010],d[10000];
queue<int> q;
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9'){if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
to[cnt]=a,val[cnt]=0,next[cnt]=head[b],head[b]=cnt++;
}
int bfs()
{
while(!q.empty()) q.pop();
memset(d,0,sizeof(d));
d[S]=1,q.push(S);
int i,u;
while(!q.empty())
{
u=q.front(),q.pop();
for(i=head[u];i!=-1;i=next[i])
{
if(!d[to[i]]&&val[i])
{
d[to[i]]=d[u]+1;
if(to[i]==T) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dfs(int x,int mf)
{
if(x==T) return mf;
int i,k,temp=mf;
for(i=head[x];i!=-1;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i])
{
k=dfs(to[i],min(temp,val[i]));
if(!k) d[to[i]]=0;
val[i]-=k,val[i^1]+=k,temp-=k;
if(!temp) break;
}
}
return mf-temp;
}
int main()
{
n=rd(),m=rd();
int i,j,a;
T=n+n*(n+1)/2+1;
tot=n;
memset(head,-1,sizeof(head));
for(i=1;i<=n;i++)
{
a=rd();
if(!A[a]) A[a]=++tot,add(tot,T,m*a*a);
add(i,T,a),add(i,A[a],1<<30);
}
for(i=1;i<=n;i++)
for(j=i;j<=n;j++)
num[i][j]=(i==j)?i:(++tot);
for(i=1;i<=n;i++)
{
for(j=i;j<=n;j++)
{
map[i][j]=rd();
if(i!=j) add(num[i][j],num[i][j-1],1<<30),
add(num[i][j],num[i+1][j],1<<30);
if(map[i][j]<0) add(num[i][j],T,-map[i][j]);
else add(S,num[i][j],map[i][j]),sum+=map[i][j];
}
}
while(bfs()) ans+=dfs(S,1<<30);
printf("%d",sum-ans);
return 0;
}

【BZOJ4873】[Shoi2017]寿司餐厅 最大权闭合图的更多相关文章

  1. BZOJ4873[Shoi2017]寿司餐厅——最大权闭合子图

    题目描述 Kiana最近喜欢到一家非常美味的寿司餐厅用餐.每天晚上,这家餐厅都会按顺序提供n种寿司,第i种寿司有一个 代号ai和美味度di,i,不同种类的寿司有可能使用相同的代号.每种寿司的份数都是无 ...

  2. 【最大权闭合子图】bzoj4873 [Shoi2017]寿司餐厅

    4873: [Shoi2017]寿司餐厅 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 369  Solved: 256[Submit][Status ...

  3. bzoj4873: [Shoi2017]寿司餐厅(最大权闭合子图)

    4873: [Shoi2017]寿司餐厅 大难题啊啊!!! 题目:传送门 题解:一眼题是网络流,但还是不会OTZ,菜啊... %题解... 最大权闭合子图!!! 好的...开始花式建边: 1.对于每个 ...

  4. [BZOJ4873][六省联考2017]寿司餐厅(最大权闭合子图)

    4873: [Shoi2017]寿司餐厅 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 490  Solved: 350[Submit][Status ...

  5. BZOJ4873 [Shoi2017]寿司餐厅 【最大权闭合子图】

    题目链接 BZOJ4873 题解 题意很鬼畜,就可以考虑网络流[雾] 然后就会发现这是一个裸的最大权闭合子图 就是注意要离散化一下代号 #include<algorithm> #inclu ...

  6. bzoj4873 [Shoi2017]寿司餐厅

    Input 第一行包含两个正整数n,m,分别表示这家餐厅提供的寿司总数和计算寿司价格中使用的常数. 第二行包含n个正整数,其中第k个数ak表示第k份寿司的代号. 接下来n行,第i行包含n-i+1个整数 ...

  7. [HEOI2017] 寿司餐厅 + 最大权闭合子图的总结

    Description 太长了自己看叭 点这里! Solution 先学一波什么叫最大权闭合子图. 先要明白什么是闭合子图,闭合子图就是给定一个有向图,从中选择一些点组成一个点集V.对于V中任意一个点 ...

  8. BZOJ4873 Shoi2017寿司餐厅(最小割)

    选择了某个区间就必须选择其所有子区间,容易想到这是一个最大权闭合子图的模型.考虑将区间按长度分层,相邻层按包含关系连边,区间[i,j]的权值即di,j,其中最后一层表示长度为1的区间的同时也表示寿司本 ...

  9. bzoj4873: [Shoi2017]寿司餐厅(最小割)

    传送门 大佬们是怎么一眼看出这是一个最大权闭合子图的……大佬好强->这里 1.把所有区间$(i,j)$看成一个点,如果权值大于0,则从$S$向他连边,容量为权值,否则从它向$T$连边,容量为权值 ...

随机推荐

  1. Mysql 数据库数值类型详解

    MySQL 支持所有标准SQL 中的数值类型,其中包括严格数值类型(INTEGER.SMALLINT.DECIMAL 和NUMERIC),以及近似数值数据类型(FLOAT.REAL 和DOUBLE P ...

  2. vsftpd被动模式配置

    1.vsftp配置   参考文章http://linux008.blog.51cto.com/2837805/6105992.设置vsftpd.conf开启被动模式参数    #vim    pasv ...

  3. linux kill 关闭进程命令

    杀死进程最安全的方法是单纯使用kill命令,不加修饰符,不带标志. 首先使用ps -ef命令确定要杀死进程的PID,然后输入以下命令: # kill -pid 注释:标准的kill命令通常都能达到目的 ...

  4. Atitit.软件开发概念(11)--网络子系统--url编码 空格问题URLEncoder java js php

    Atitit.软件开发概念(11)--网络子系统--url编码 空格问题URLEncoder java js php 1. RFC2396标准 including HTML 4.01 section  ...

  5. InnoDB存储引擎表的逻辑存储结构

    1.索引组织表:     在InnoDB存储引擎中,表都是依照主键顺序组织存放的.这样的存储方式的表称为索引组织表,在innodb存储引擎表中,每张表都有主键.假设创建的时候没有显式定义主键,则Inn ...

  6. ruby gem tips(转)

    淘宝源: https://ruby.taobao.org 升级ruby gem gem update --system 查看gem版本 gem -v 查看gem版本,gems安装目录,remote s ...

  7. 在eclipse中执行sql的编码问题

    症状-分析: 刚才在eclipse中执行sql文件,发现数据进入数据库的时候总是乱码 后来查看MySQL的编码设置,全是UTF8,没问题,sql文件本身也是UTF8的编码 并且,使用MySQL的CMD ...

  8. jquery 获取字符串中的数字

    str_num = 'abc123' num = parseInt(str_num.replace(/[^0-9]/ig,"")); alert(num);

  9. 插入节点appendChild()

    http://www.imooc.com/code/1698 插入节点appendChild() 在指定节点的最后一个子节点列表之后添加一个新的子节点. 语法: appendChild(newnode ...

  10. typeof关键字

    C语言中 typeof 关键字是用来定义变量数据类型的.在linux内核源代码中广泛使用. 使用方法 1.当x的类型为是 int 时 _min1变量的数据类型则为 int. 2.当x为一个表达式时(例 ...