Check Corners

Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2513    Accepted Submission(s): 904

Problem Description
Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numbers ( 1 <= i <= m, 1 <= j <= n ). Now he selects some sub-matrices, hoping to find the maximum number. Then he finds that there may be more than one maximum number, he also wants to know the number of them. But soon he find that it is too complex, so he changes his mind, he just want to know whether there is a maximum at the four corners of the sub-matrix, he calls this “Check corners”. It’s a boring job when selecting too many sub-matrices, so he asks you for help. (For the “Check corners” part: If the sub-matrix has only one row or column just check the two endpoints. If the sub-matrix has only one entry just output “yes”.)
 
Input
There are multiple test cases.

For each test case, the first line contains two integers m, n (1 <= m, n <= 300), which is the size of the row and column of the matrix, respectively. The next m lines with n integers each gives the elements of the matrix which fit in non-negative 32-bit integer.

The next line contains a single integer Q (1 <= Q <= 1,000,000), the number of queries. The next Q lines give one query on each line, with four integers r1, c1, r2, c2 (1 <= r1 <= r2 <= m, 1 <= c1 <= c2 <= n), which are the indices of the upper-left corner and lower-right corner of the sub-matrix in question.

 
Output
For each test case, print Q lines with two numbers on each line, the required maximum integer and the result of the “Check corners” using “yes” or “no”. Separate the two parts with a single space.
 
Sample Input

4 4 4 4 10 7 2 13 9 11 5 7 8 20 13 20 8 2 4 1 1 4 4 1 1 3 3 1 3 3 4 1 1 1 1
 
Sample Output

20 no 13 no 20 yes 4 yes
 
求子矩阵内最大的值是多少。
思路:
二维RMQ处理。
dp[row][col][i][j] 表示[row,row+2^i-1]x[col,col+2^j-1] 二维区间内的最小值
=  max{dp[row][col][i][j-1],dp[row][col][i-1][j],dp[row][col+2^(j-1)][i][j-1],dp[row+2^(i-1)][col][i-1][j]}
 
查询结果为
      max{dp[sx][sy][kx][ky],dp[sx][ey-2^ky+1][kx][ky],dp[ex-2^kx+1][sy][kx][ky],dp[ex-2^kx+1][ey-2^ky+1][kx][ky]}
 
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1000000001
#define MOD 1000000007
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
//#define pi acos(-1.0)
using namespace std;
const int MAXN = ;
int a[MAXN][MAXN],n,m,dp[MAXN][MAXN][][];
void Init()
{
for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
dp[i][j][][] = a[i][j];
}
}
for(int pi = ; pi < ; pi++){
for(int pj = ; pj < ; pj++){
if(pi == && pj == )continue;
for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
if(i + ( << pi) - > n || j + ( << pj) - > m)continue;
if(pi == ){
dp[i][j][pi][pj] = max(dp[i][j][pi][pj-],dp[i][j+(<<(pj-))][pi][pj-]);
}
else {
dp[i][j][pi][pj] = max(dp[i][j][pi-][pj],dp[i+(<<(pi-))][j][pi-][pj]);
}
}
}
}
}
}
void getans(int x1,int y1,int x2,int y2)
{
int kx,ky;
kx = (int)(log((double)(x2 - x1)) / log(2.0));
ky = (int)(log((double)(y2 - y1)) / log(2.0));
int ans = -INF;
ans = max(ans,dp[x1][y1][kx][ky]);
ans = max(ans,dp[x2 - ( << kx) + ][y1][kx][ky]);
ans = max(ans,dp[x1][y2 - ( << ky) + ][kx][ky]);
ans = max(ans,dp[x2 - ( << kx) + ][y2 - ( << ky) + ][kx][ky]);
printf("%d ",ans);
if(a[x1][y1] == ans || a[x1][y2] == ans || a[x2][y1] == ans || a[x2][y2] == ans)printf("yes\n");
else printf("no\n");
}
void solve()
{
int q;
scanf("%d",&q);
int x1,y1,x2,y2;
while(q--){
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
getans(x1,y1,x2,y2);
}
}
int main()
{
while(~scanf("%d%d",&n,&m)){
for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
scanf("%d",&a[i][j]);
}
}
Init();
solve();
}
return ;
}

hdu2888 二维RMQ的更多相关文章

  1. hdu2888 二维ST表(RMQ)

    二维RMQ其实和一维差不太多,但是dp时要用四维 /* 二维rmq */ #include<iostream> #include<cstring> #include<cs ...

  2. HDU2888 Check Corners(二维RMQ)

    有一个矩阵,每次查询一个子矩阵,判断这个子矩阵的最大值是不是在这个子矩阵的四个角上 裸的二维RMQ #pragma comment(linker, "/STACK:1677721600&qu ...

  3. hduacm 2888 ----二维rmq

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 模板题  直接用二维rmq 读入数据时比较坑爹  cin 会超时 #include <cstdio& ...

  4. hdu 2888 二维RMQ模板题

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  5. HDU 2888 Check Corners (模板题)【二维RMQ】

    <题目链接> <转载于 >>> > 题目大意: 给出一个N*M的矩阵,并且给出该矩阵上每个点对应的值,再进行Q次询问,每次询问给出代询问子矩阵的左上顶点和右下 ...

  6. POJ 2019 Cornfields [二维RMQ]

    题目传送门 Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7963   Accepted: 3822 ...

  7. 【LightOJ 1081】Square Queries(二维RMQ降维)

    Little Tommy is playing a game. The game is played on a 2D N x N grid. There is an integer in each c ...

  8. 【HDOJ 2888】Check Corners(裸二维RMQ)

    Problem Description Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numb ...

  9. POJ 2019 Cornfields (二维RMQ)

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4911   Accepted: 2392 Descri ...

随机推荐

  1. CF721C. Journey[DP DAG]

    C. Journey time limit per test 3 seconds memory limit per test 256 megabytes input standard input ou ...

  2. codevs1004四子连棋[BFS 哈希]

    1004 四子连棋   时间限制: 1 s   空间限制: 128000 KB   题目等级 : 黄金 Gold   题目描述 Description 在一个4*4的棋盘上摆放了14颗棋子,其中有7颗 ...

  3. ANE接入平台心得记录(安卓)

    开发环境:FlashBuilder4.7 AIR13.0 Eclipse 由于我懒得陪安卓的开发环境所以我下载了包含安卓SDK Manager的Eclipse,其实直接用FlashBuilder开发A ...

  4. Java中的单例模式

    单例模式: public class Person{ public static Person per; //定义一个静态变量,用来存储当前类的对象 private Person() //构造一个私有 ...

  5. S2结业考试的第一次测验

    错题分析: 1:java中的错误处理是通过异常处理模型来实现的,那么异常处理模块能处理的错误是: A:运行时错误 B:逻辑错误 C:语法错误 D:内部错误 正确答案是:A 解析:运行时异常都是Runt ...

  6. Sql-Server应用程序的高级注入

    本文作者:Chris Anley 翻译: luoluo [luoluonet@hotmail.com] [目 录] [概要] [介绍] [通过错误信息获取信息] [更深入的访问] [xp_cmdshe ...

  7. IIS7.5上的REST服务的Put操作发生HTTP Error 405.0 - Method Not Allowed 解决方法

    WebDAV 是超文本传输协议 (HTTP) 的一组扩展,为 Internet 上计算机之间的编辑和文件管理提供了标准.利用这个协议用户可以通过Web进行远程的基本文件操作,如拷贝.移动.删除等.在I ...

  8. page-cache层

    pagecache层内存管理 如果使用page,尤其对于32位系统来说,kmap & kunmap,可以把做struct *page与虚拟地址的映射 用kmap做一个临时的映射,然后通过kun ...

  9. HTTP错误代码

    服务器错误代码大全 ·400 - 错误的请求. ·401 - 访问被拒绝.IIS 定义了许多不同的 401 错误,它们指明更为具体的错误原因.这些具体的错误代码在浏览器中显示,但不在 IIS 日志中显 ...

  10. 增强for循环(forearch)

    增强for循环是为了简化在遍历数组需要先获得数组的长度或者在遍历集合中的元素的时候需要使用迭代器的操作. 引入时间:JDK1.5 语法格式: for(数据类型 变量 :需要迭代的数组或者集合){ } ...