Check Corners

Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2513    Accepted Submission(s): 904

Problem Description
Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numbers ( 1 <= i <= m, 1 <= j <= n ). Now he selects some sub-matrices, hoping to find the maximum number. Then he finds that there may be more than one maximum number, he also wants to know the number of them. But soon he find that it is too complex, so he changes his mind, he just want to know whether there is a maximum at the four corners of the sub-matrix, he calls this “Check corners”. It’s a boring job when selecting too many sub-matrices, so he asks you for help. (For the “Check corners” part: If the sub-matrix has only one row or column just check the two endpoints. If the sub-matrix has only one entry just output “yes”.)
 
Input
There are multiple test cases.

For each test case, the first line contains two integers m, n (1 <= m, n <= 300), which is the size of the row and column of the matrix, respectively. The next m lines with n integers each gives the elements of the matrix which fit in non-negative 32-bit integer.

The next line contains a single integer Q (1 <= Q <= 1,000,000), the number of queries. The next Q lines give one query on each line, with four integers r1, c1, r2, c2 (1 <= r1 <= r2 <= m, 1 <= c1 <= c2 <= n), which are the indices of the upper-left corner and lower-right corner of the sub-matrix in question.

 
Output
For each test case, print Q lines with two numbers on each line, the required maximum integer and the result of the “Check corners” using “yes” or “no”. Separate the two parts with a single space.
 
Sample Input

4 4 4 4 10 7 2 13 9 11 5 7 8 20 13 20 8 2 4 1 1 4 4 1 1 3 3 1 3 3 4 1 1 1 1
 
Sample Output

20 no 13 no 20 yes 4 yes
 
求子矩阵内最大的值是多少。
思路:
二维RMQ处理。
dp[row][col][i][j] 表示[row,row+2^i-1]x[col,col+2^j-1] 二维区间内的最小值
=  max{dp[row][col][i][j-1],dp[row][col][i-1][j],dp[row][col+2^(j-1)][i][j-1],dp[row+2^(i-1)][col][i-1][j]}
 
查询结果为
      max{dp[sx][sy][kx][ky],dp[sx][ey-2^ky+1][kx][ky],dp[ex-2^kx+1][sy][kx][ky],dp[ex-2^kx+1][ey-2^ky+1][kx][ky]}
 
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1000000001
#define MOD 1000000007
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
//#define pi acos(-1.0)
using namespace std;
const int MAXN = ;
int a[MAXN][MAXN],n,m,dp[MAXN][MAXN][][];
void Init()
{
for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
dp[i][j][][] = a[i][j];
}
}
for(int pi = ; pi < ; pi++){
for(int pj = ; pj < ; pj++){
if(pi == && pj == )continue;
for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
if(i + ( << pi) - > n || j + ( << pj) - > m)continue;
if(pi == ){
dp[i][j][pi][pj] = max(dp[i][j][pi][pj-],dp[i][j+(<<(pj-))][pi][pj-]);
}
else {
dp[i][j][pi][pj] = max(dp[i][j][pi-][pj],dp[i+(<<(pi-))][j][pi-][pj]);
}
}
}
}
}
}
void getans(int x1,int y1,int x2,int y2)
{
int kx,ky;
kx = (int)(log((double)(x2 - x1)) / log(2.0));
ky = (int)(log((double)(y2 - y1)) / log(2.0));
int ans = -INF;
ans = max(ans,dp[x1][y1][kx][ky]);
ans = max(ans,dp[x2 - ( << kx) + ][y1][kx][ky]);
ans = max(ans,dp[x1][y2 - ( << ky) + ][kx][ky]);
ans = max(ans,dp[x2 - ( << kx) + ][y2 - ( << ky) + ][kx][ky]);
printf("%d ",ans);
if(a[x1][y1] == ans || a[x1][y2] == ans || a[x2][y1] == ans || a[x2][y2] == ans)printf("yes\n");
else printf("no\n");
}
void solve()
{
int q;
scanf("%d",&q);
int x1,y1,x2,y2;
while(q--){
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
getans(x1,y1,x2,y2);
}
}
int main()
{
while(~scanf("%d%d",&n,&m)){
for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
scanf("%d",&a[i][j]);
}
}
Init();
solve();
}
return ;
}

hdu2888 二维RMQ的更多相关文章

  1. hdu2888 二维ST表(RMQ)

    二维RMQ其实和一维差不太多,但是dp时要用四维 /* 二维rmq */ #include<iostream> #include<cstring> #include<cs ...

  2. HDU2888 Check Corners(二维RMQ)

    有一个矩阵,每次查询一个子矩阵,判断这个子矩阵的最大值是不是在这个子矩阵的四个角上 裸的二维RMQ #pragma comment(linker, "/STACK:1677721600&qu ...

  3. hduacm 2888 ----二维rmq

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 模板题  直接用二维rmq 读入数据时比较坑爹  cin 会超时 #include <cstdio& ...

  4. hdu 2888 二维RMQ模板题

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  5. HDU 2888 Check Corners (模板题)【二维RMQ】

    <题目链接> <转载于 >>> > 题目大意: 给出一个N*M的矩阵,并且给出该矩阵上每个点对应的值,再进行Q次询问,每次询问给出代询问子矩阵的左上顶点和右下 ...

  6. POJ 2019 Cornfields [二维RMQ]

    题目传送门 Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7963   Accepted: 3822 ...

  7. 【LightOJ 1081】Square Queries(二维RMQ降维)

    Little Tommy is playing a game. The game is played on a 2D N x N grid. There is an integer in each c ...

  8. 【HDOJ 2888】Check Corners(裸二维RMQ)

    Problem Description Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numb ...

  9. POJ 2019 Cornfields (二维RMQ)

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4911   Accepted: 2392 Descri ...

随机推荐

  1. 学生管理系统<分层开发>

    一:分层架构 搭建DAL层(数据访问层).UI层(表示层).BLL层(业务逻辑层)以及Model层(实体层) 各层的引用关系: DAL.UI.BLL层引用Model层 UI层引用BLL层 BLL层引用 ...

  2. vs2015产品密钥

    HM6NR-QXX7C-DFW2Y-8B82K-WTYJV 博主验证有效

  3. marquee标签、插入百度地图

    marquee></marquee>可以实现多种滚动效果,无需js控制. 使用marquee标记不仅可以移动文字,也可以移动图片,表格等. 语法:<marquee>... ...

  4. avalon.js路由

    之前自己写了一个AJAX加载页面的方法:有时候一个页面里面会分区域加载不同的东西(div,html),但是IE的回退按钮,就失去任何意义了: 这两天研究了一下avalon.js的路由: 需要准备: 1 ...

  5. listview1

    Edit1.Text := listview1.Items[i].Caption; //读第i行第1列 Edit2.Text := listview1.Items[i].SubItems.string ...

  6. 微软职位内部推荐-SW Engineer II for Cloud Service

    微软近期Open的职位: Positions: SDE for Big Data Cloud Services Azure Big Data Cloud Services and Cosmos are ...

  7. Java7并发编程实战(一) 线程的管理

    1:线程的创建   1:继承Thread类,并且覆盖run()方法  2:创建一个实现Runnable接口的类.使用带参数的Thread构造器来构造 2:example-->计算打印乘法表 首先 ...

  8. CentOS 7下的 Mysql 主从配置

    最近在玩mysql主从配置,在此记录一下 一.前言 1.安装两个虚拟机(CentOS 7).iP分别是192.168.47.131 和192.168.47.133.其中192.168.47.133作为 ...

  9. DTCMS插件的制作实例电子资源管理(一)插件目录结构

    总目录 插件目录结构(一) Admin后台页面编写(二) 前台模板页编写(三) URL重写(四)     本实例旨在以一个实际的项目中的例子来介绍如何在dtcms中制作插件,本系列文章非入门教程,部分 ...

  10. jQuery操作单选按钮(radio)用法

    1.获取选中值,四种方法都可以: $('input:radio:checked').val():$("input[type='radio']:checked").val(); $( ...