有向连通图存在欧拉回路的充要条件是所有点入度=出度。

首先随便给定所有无向边一个方向(不妨直接是u->v方向),记录所有点的度(记:度=入度-出度)。

这时如果有点的度不等于0,那么就不存在欧拉回路,就需要改变那些无向边的方向。

而改变一个无向边的方向,相当于边上两个端点的入度和出度都变化了1,它们的度±2。

另外,这样可以证明如果这时某个点的度为奇数那么一定不存在存在欧拉回路的解。

构图如下:所有无向边(u,v),建立容量为1的(u,v)边;所有度小于0的点u,建立容量为-deg/2的(vs,u)边;所有度大于0的点u,建立容量为deg/2(u,vt)边。

最后如果和vs、vt关联的边都满流,那么就有存在欧拉回路的解。

 #include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 222
#define MAXM 4444 struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NE,NV;
int head[MAXN]; void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=; edge[NE].flow=;
edge[NE].next=head[v]; head[v]=NE++;
} int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-) continue;
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
} int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=,aug=INF;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
//aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^].flow-=aug;
}
//aug=-1;
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==) break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return flow;
} int n,m,deg[MAXN];
bool solve(){
for(int i=; i<=n; ++i){
if(abs(deg[i])&) return ;
if(deg[i]>) addEdge(i,vt,deg[i]>>);
else if(deg[i]<) addEdge(vs,i,(-deg[i])>>);
}
ISAP();
for(int i=; i<NE ;i+=){
if(edge[i^].v!=vs&&edge[i].v!=vt) continue;
if(edge[i].cap!=edge[i].flow) return ;
}
return ;
}
int main(){
int t,a,b,c;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
vs=; vt=n+; NV=vt+; NE=;
memset(head,-,sizeof(head));
memset(deg,,sizeof(deg));
while(m--){
scanf("%d%d%d",&a,&b,&c);
--deg[a]; ++deg[b];
if(c==) addEdge(a,b,);
}
if(solve()) puts("possible");
else puts("impossible");
}
return ;
}

POJ1637 Sightseeing tour(判定混合图欧拉回路)的更多相关文章

  1. [POJ1637]Sightseeing tour:混合图欧拉回路

    分析 混合图欧拉回路问题. 一个有向图有欧拉回路当且仅当图连通并且对于每个点,入度\(=\)出度. 入度和出度相等可以联想到(我也不知道是怎么联想到的)网络流除了源汇点均满足入流\(=\)出流.于是可 ...

  2. Sightseeing tour 【混合图欧拉回路】

    题目链接:http://poj.org/problem?id=1637 Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total ...

  3. POJ 1637 Sightseeing tour(混合图欧拉回路+最大流)

    http://poj.org/problem?id=1637 题意:给出n个点和m条边,这些边有些是单向边,有些是双向边,判断是否能构成欧拉回路. 思路: 构成有向图欧拉回路的要求是入度=出度,无向图 ...

  4. POJ 1637 Sightseeing tour (混合图欧拉路判定)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6986   Accepted: 2901 ...

  5. [Poi2010]Bridges 最大流+二分答案 判定混合图欧拉回路

    https://darkbzoj.cf/problem/2095 bzoj 相同的题挂了,这个oj可以写. 题目就是要我们找一条欧拉回路(每个桥经过一次就好,不管方向),使得这条回路上权值最大的尽量小 ...

  6. poj1637 Sightseeing tour(混合图欧拉回路)

    题目链接 题意 给出一个混合图(有无向边,也有有向边),问能否通过确定无向边的方向,使得该图形成欧拉回路. 思路 这是一道混合图欧拉回路的模板题. 一张图要满足有欧拉回路,必须满足每个点的度数为偶数. ...

  7. POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]

    嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...

  8. POJ 1637 Sightseeing tour ★混合图欧拉回路

    [题目大意]混合图欧拉回路(1 <= N <= 200, 1 <= M <= 1000) [建模方法] 把该图的无向边随便定向,计算每个点的入度和出度.如果有某个点出入度之差为 ...

  9. poj1637Sightseeing tour(混合图欧拉回路)

    题目请戳这里 题目大意:求混合图欧拉回路. 题目分析:最大流.竟然用网络流求混合图的欧拉回路,涨姿势了啊啊.. 其实仔细一想也是那么回事.欧拉回路是遍历所有边一次又回到起点的回路.双向图只要每个点度数 ...

随机推荐

  1. nmake geos

    参考:http://blog.sina.com.cn/s/blog_82a2a7d301010f87.html 1 打开visual  studio command prompt 该工具位于 开始程序 ...

  2. iOS开发人员不容错过的10大工具

    内容简介 1.iOS简介 2.iOS开发十大实用工具之开发环境 3.iOS开发十大实用工具之图标设计 4.iOS开发十大实用工具之原型设计 5.iOS开发十大实用工具之演示工具 6.iOS开发十大实用 ...

  3. css设置网页文本选中样式

    网页的默认的文本选中颜色是蓝底白字(大多应该是吧),这个样子: 感觉并不是特别好看,可以通过CSS3的一个特性,一个CSS3的伪类选择器::selection来设置文本被选中时的状态,比如本博客的主题 ...

  4. linux eclipse3.6.1 maven安装

    linux maven安装及 eclipse maven插件安装,有需要的朋友可以参考下. 1. maven的安装(apache-maven-3.0.5为例):  a.官网地址:http://mave ...

  5. Linux内存性能指标、CPU性能指标

    内存性能指标 内存基础概念 先执行一下 top 命令,看结果中关于内存的相关部分 # top 其中的 VIRT.RES.SWAP 都是什么呢? 分别是下面的3个概念: 物理内存 Resident - ...

  6. Java系列笔记(3) - Java 内存区域和GC机制

    目录 Java垃圾回收概况 Java内存区域 Java对象的访问方式 Java内存分配机制 Java GC机制 垃圾收集器 Java垃圾回收概况 Java GC(Garbage Collection, ...

  7. 重温WCF之WCF抛出异常的处理SOAP Fault(十二)

    1.(服务端)抛出和(客户端)捕获SOAP Fault 当我们需要客户端获取到WCF服务端的抛出的异常的时候,使用FaultException类 WCF类库在System.ServiceModel命名 ...

  8. Genymotion刷入谷歌应用市场以及获取root权限

    Genymotion刷入谷歌应用市场以及获取root权限 - 推酷http://www.tuicool.com/articles/rEV3aa6 刷入gapp, arm框架,supersu的包要注意, ...

  9. Mongo DB Study: first face with mongo DB

    Mongo DB Study: first face with mongo DB 1.  study methods: 1.  Translate: I am the mongo DB organiz ...

  10. JAVA和PYTHON同时实现AES的加密解密操作---且生成的BASE62编码一致

    终于有机会生产JAVA的东东了. 有点兴奋. 花了一天搞完.. java(关键key及算法有缩减): package com.security; import javax.crypto.Cipher; ...