x和y分开考虑,在(1,1)到(n,m)之间可以选择走i步。就需要选i步对应的行C(n-2,i)及i步对应的列C(m-2,i)。相乘起来。 假设$m\leq n$
$$\sum_{i=1}^{m-2} C_{n-2}^i\cdot C_{m-2}^i=\sum_{i=1}^{m-2} C_{n-2}^i\cdot C_{m-2}^{m-2-i}=C_{n+m-4}^{m-2}$$
然后标程里求i的阶乘的逆是预处理的,主要这句:
$$f[i]=(M-M/i)\cdot f[M\%i]\%M$$
这里f即i的逆元,为什么可以这么求呢?

首先这里的M必须是质数。
$$M=k\cdot i+r \equiv 0 \pmod M$$
两边乘上$i^{-1}\cdot r^{-1}$(如果M不是质数,r就可能为0)
$$\begin{eqnarray} k\cdot r^{-1}+i^{-1} &\equiv& 0 &\pmod M\\
i^{-1} &\equiv& -k\cdot r^{-1} &\pmod M\\
i^{-1} &\equiv& M-\left\lfloor\frac{M}{i}\right\rfloor\cdot \left(M\bmod i\right)^{-1} &\pmod M \end{eqnarray}$$
代码

#include<cstdio>
#define M 1000000007
#define N 200001
#define ll long long
ll fac[N]={1,1},inv[N]={1,1},f[N]={1,1};
int n,m;
ll C(ll a,ll b){
return fac[a]*inv[b]%M*inv[a-b]%M;
}
int main(){
for(int i=2;i<N;i++){
fac[i]=fac[i-1]*i%M;
f[i]=(M-M/i)*f[M%i]%M;
inv[i]=inv[i-1]*f[i]%M;
}
while(~scanf("%d%d",&n,&m))
printf("%lld\n",C(m+n-4,m-2));
}

  

【HDU 5698】瞬间移动(组合数,逆元)的更多相关文章

  1. HDU 5698——瞬间移动——————【逆元求组合数】

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  2. HDU 5698 大组合数取模(逆元)

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  3. HDU 5698 瞬间移动 数学

    瞬间移动 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5698 Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次 ...

  4. 2016 ACM/ICPC Asia Regional Shenyang Online 1003/HDU 5894 数学/组合数/逆元

    hannnnah_j’s Biological Test Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K ...

  5. HDU 5698 瞬间移动

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  6. hdu 5698 瞬间移动(排列组合)

    这题刚看完,想了想,没思路,就题解了 = = 但不得不说,找到这个题解真的很强大,链接:http://blog.csdn.net/qwb492859377/article/details/514781 ...

  7. hdu 5698(杨辉三角的性质+逆元)

    ---恢复内容开始--- 瞬间移动 Accepts: 1018 Submissions: 3620 Time Limit: 4000/2000 MS (Java/Others) Memory Limi ...

  8. Harvest of Apples (HDU多校第四场 B) (HDU 6333 ) 莫队 + 组合数 + 逆元

    题意大致是有n个苹果,问你最多拿走m个苹果有多少种拿法.题目非常简单,就是求C(n,0)+...+C(n,m)的组合数的和,但是询问足足有1e5个,然后n,m都是1e5的范围,直接暴力的话肯定时间炸到 ...

  9. HDU 6044--Limited Permutation(搜索+组合数+逆元)

    题目链接 Problem Description As to a permutation p1,p2,⋯,pn from 1 to n, it is uncomplicated for each 1≤ ...

随机推荐

  1. java 28 - 5 JDK5的新特性 之 枚举的使用

    上一章,自定义了枚举类,超级麻烦.. 所以,JAVA给了一个枚举类:类 Enum<E extends Enum<E>> 注意事项 定义枚举类要用关键字enum 所有枚举类都是E ...

  2. 如何查看文件是dos格式还是unix格式的?

    一.背景 由于windows和linux对换行的标识不一样,不同系统的代码传递导致代码格式的改变中可能会带来程序无法正常编译通过的问题.因此根据一些编译的错误提示,可以定位到是文件格式的问题,要对程序 ...

  3. 配置Supervisor开机启动

    配置Supervisor开机启动: 新建一个"supervisord.service"文件 # dservice for systemd (CentOS 7.0+) # by ET ...

  4. ubuntu 12.04下zmap安装

    zmap介绍 https://zmap.io/ ----------------华丽的分割线---------------- zmap 1.03 的安装 Step1: sudo apt-get ins ...

  5. subtable

  6. Java设计模式之-----工厂模式(简单工厂,抽象工厂)

    一.工厂模式主要是为创建对象提供过渡接口,以便将创建对象的具体过程屏蔽隔离起来,达到提高灵活性的目的. 工厂模式在<Java与模式>中分为三类:1)简单工厂模式(Simple Factor ...

  7. DEDECMS之七 如何实现文章推荐排行榜

    经常可以看到各种排行榜,这些文章列表的标题之前加了序号,前三条还有显眼样式 1.实现效果 2.实现方法 <ul class="hotPh1"> {dede:arclis ...

  8. 安卓开发:效果图中标注的像素尺寸如何转换为安卓的dp尺寸?

    我们的UI基于1920x1080分辨率给的尺寸标注,但是在安卓开发中大家一般都使用dp.sp来标注界面尺寸,所以需要一个dp与sp的转换公式. 一开始参考的的这篇文章:关于Android开发中px.d ...

  9. JSP 4个域对象-9个内置对象-11个EL隐式对象

    一. 四大域对象 1. PageContext :页面范围的数据 2. ServletRequest:请求范围的数据 3. HttpSession:会话范围的数据 4. ServletContext: ...

  10. PRML读书会第十四章 Combining Models(committees,Boosting,AdaBoost,决策树,条件混合模型)

    主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:57:18 大家好,今天我们讲一下第14章combining models,这一章是联合模型,通过将多个模型以某种形式 ...