x和y分开考虑,在(1,1)到(n,m)之间可以选择走i步。就需要选i步对应的行C(n-2,i)及i步对应的列C(m-2,i)。相乘起来。 假设$m\leq n$
$$\sum_{i=1}^{m-2} C_{n-2}^i\cdot C_{m-2}^i=\sum_{i=1}^{m-2} C_{n-2}^i\cdot C_{m-2}^{m-2-i}=C_{n+m-4}^{m-2}$$
然后标程里求i的阶乘的逆是预处理的,主要这句:
$$f[i]=(M-M/i)\cdot f[M\%i]\%M$$
这里f即i的逆元,为什么可以这么求呢?

首先这里的M必须是质数。
$$M=k\cdot i+r \equiv 0 \pmod M$$
两边乘上$i^{-1}\cdot r^{-1}$(如果M不是质数,r就可能为0)
$$\begin{eqnarray} k\cdot r^{-1}+i^{-1} &\equiv& 0 &\pmod M\\
i^{-1} &\equiv& -k\cdot r^{-1} &\pmod M\\
i^{-1} &\equiv& M-\left\lfloor\frac{M}{i}\right\rfloor\cdot \left(M\bmod i\right)^{-1} &\pmod M \end{eqnarray}$$
代码

#include<cstdio>
#define M 1000000007
#define N 200001
#define ll long long
ll fac[N]={1,1},inv[N]={1,1},f[N]={1,1};
int n,m;
ll C(ll a,ll b){
return fac[a]*inv[b]%M*inv[a-b]%M;
}
int main(){
for(int i=2;i<N;i++){
fac[i]=fac[i-1]*i%M;
f[i]=(M-M/i)*f[M%i]%M;
inv[i]=inv[i-1]*f[i]%M;
}
while(~scanf("%d%d",&n,&m))
printf("%lld\n",C(m+n-4,m-2));
}

  

【HDU 5698】瞬间移动(组合数,逆元)的更多相关文章

  1. HDU 5698——瞬间移动——————【逆元求组合数】

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  2. HDU 5698 大组合数取模(逆元)

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  3. HDU 5698 瞬间移动 数学

    瞬间移动 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5698 Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次 ...

  4. 2016 ACM/ICPC Asia Regional Shenyang Online 1003/HDU 5894 数学/组合数/逆元

    hannnnah_j’s Biological Test Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K ...

  5. HDU 5698 瞬间移动

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  6. hdu 5698 瞬间移动(排列组合)

    这题刚看完,想了想,没思路,就题解了 = = 但不得不说,找到这个题解真的很强大,链接:http://blog.csdn.net/qwb492859377/article/details/514781 ...

  7. hdu 5698(杨辉三角的性质+逆元)

    ---恢复内容开始--- 瞬间移动 Accepts: 1018 Submissions: 3620 Time Limit: 4000/2000 MS (Java/Others) Memory Limi ...

  8. Harvest of Apples (HDU多校第四场 B) (HDU 6333 ) 莫队 + 组合数 + 逆元

    题意大致是有n个苹果,问你最多拿走m个苹果有多少种拿法.题目非常简单,就是求C(n,0)+...+C(n,m)的组合数的和,但是询问足足有1e5个,然后n,m都是1e5的范围,直接暴力的话肯定时间炸到 ...

  9. HDU 6044--Limited Permutation(搜索+组合数+逆元)

    题目链接 Problem Description As to a permutation p1,p2,⋯,pn from 1 to n, it is uncomplicated for each 1≤ ...

随机推荐

  1. oracle中substr() instr() 用法

    --substr(字符串,截取开始位置,截取长度)=返回截取的字 ,) from dual;--返回结果为:m ,) from dual;--返回结果为:m--说明0和1都表示截取的位置为第一个字符 ...

  2. 单机多实例Tomcat部署

    单机单用户基础上, 如何运行多个tomcat实例. 首先是tomcat的目录结构 bin    – 包含所有运行tomcat的二进制和脚本文件 lib     – 包含tomcat使用的所有共享库 c ...

  3. IntelliJ Idea14 创建Maven多模块项目

    Maven多模块项目的参考资料 Sonatype上的教程 http://books.sonatype.com/mvnex-book/reference/multimodule.html 在这个教程里, ...

  4. switch2osm使用open street map离线地图中文乱码方框解决办法

    ----------written by shenwenkai------------- ubuntu linux环境下,按照网址(https://switch2osm.org/serving-til ...

  5. 笔记 (note)

    笔记[问题描述]给定一个长度为m的序列a,下标编号为1~m.序列的每个元素都是1~n的整数.定义序列的代价为m−1 ∑|ai+1-ai| i=1 你现在可以选择两个数x和y,并将序列a中所有的x改成y ...

  6. 添加JSON Data到已经存在的JSON文件中

    早上在学习<Post model至Web Api创建或是保存数据>http://www.cnblogs.com/insus/p/4343833.html ,如果你第二添加时,json文件得 ...

  7. 推薦使用 Microsoft Anti-Cross Site Scripting Library V3.0

    原文出至: http://blog.miniasp.com/post/2009/07/29/Recommand-Microsoft-Anti-Cross-Site-Scripting-Library- ...

  8. C#——Marshal.StructureToPtr方法简介

    目录 MarshalStructureToPtr方法简介 功能及位置 语法 参数说明 异常 备注 举例 本博客(http://blog.csdn.net/livelylittlefish)贴出作者(三 ...

  9. eclipse/intellij Idea集成jetty

    jetty相对weblogic.jboss.tomcat而言,启动速度快,十分方便开发调试,以下是eclipse里的使用步骤: 一.eclipse->Marketplace里搜索 jetty 一 ...

  10. 国内优秀Android学习资源

    技术博客 应用开发 博主 博客 备注 任玉刚 CSDN博客 深入Android应用开发,深度与广度兼顾 郭霖 CSDN博客 内容实用,行文流畅,高人气博主 夏安明 CSDN博客   张鸿洋 CSDN博 ...