题目链接:

4517: [Sdoi2016]排列计数

Time Limit: 60 Sec  Memory Limit: 128 MB
Submit: 846  Solved: 530
[Submit][Status][Discuss]

Description

求有多少种长度为 n 的序列 A,满足以下条件:
1 ~ n 这 n 个数在序列中各出现了一次
若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的
满足条件的序列可能很多,序列数对 10^9+7 取模。

Input

第一行一个数 T,表示有 T 组数据。
接下来 T 行,每行两个整数 n、m。
T=500000,n≤1000000,m≤1000000
 

Output

输出 T 行,每行一个数,表示求出的序列数

 

Sample Input

5
1 0
1 1
5 2
100 50
10000 5000

Sample Output

0
1
20
578028887
60695423
 
题意:
 
思路:
 
我们很容易知道方案数是C(n,m)*dp[n-m];
dp[n]表示n的错排数;递推公式是dp[n]=(n-1)*(dp[n-1]+dp[n-2])=n*dp[n-1]+(-1)n ;
 
AC代码:
/**************************************************************
Problem: 4517
User: LittlePointer
Language: C++
Result: Accepted
Time:11108 ms
Memory:16916 kb
****************************************************************/ #include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod=1e9+7;
const int maxn=1e6+10;
LL dp[maxn],p[maxn];
inline void init()
{
dp[0]=1;dp[1]=0;dp[2]=1;p[1]=1;p[2]=2;p[0]=1;
for(int i=3;i<maxn;i++)dp[i]=(LL)(i-1)*(dp[i-1]+dp[i-2])%mod,p[i]=p[i-1]*(LL)i%mod;
}
LL pow_mod(LL x,LL y)
{
LL s=1,base=x;
while(y)
{
if(y&1)s=s*base%mod;
base=base*base%mod;
y>>=1;
}
return s;
}
int main()
{
//freopen("in.txt","r",stdin);
init();
int t,n,m;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
if(m>n){puts("0");continue;}
LL ans=p[n]*dp[n-m]%mod,temp=p[m]*p[n-m]%mod;
ans=ans*pow_mod(temp,mod-2)%mod;
printf("%lld\n",ans);
}
return 0;
}

  

 

bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)的更多相关文章

  1. [SDOI2016] 排列计数 (组合数学)

    [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰 ...

  2. 洛谷P4071 [SDOI2016] 排列计数 [组合数学]

    题目传送门 排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

  3. BZOJ 4517: [Sdoi2016]排列计数(组合数学)

    题面 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

  4. BZOJ4517:[SDOI2016]排列计数(组合数学,错排公式)

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  5. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

  6. 数学(错排):BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 434[Submit][Status ...

  7. BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]

    4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...

  8. BZOJ 4517: [Sdoi2016]排列计数 错排公式

    4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...

  9. BZOJ 4517: [Sdoi2016]排列计数 错排+逆元

    4517: [Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i, ...

随机推荐

  1. 【javascript激增的思考04】MVC与Backbone.js(beta)

    前言 最近整理了很多前端面试题的东西,今天又去参加了一次面试,不知各位烦不烦,我反正有点累了,于是我们今天继续回到我们前段时间研究的问题,我们再来看看MVC吧. 什么是MVC 又回到这个问题了,到底什 ...

  2. go语言最新版本 下载地址

    国内官方网站无法打开.放在了百度云中,定期会更新: 链接:http://pan.baidu.com/s/1dD59duh 密码:46ek 备用地址:http://pan.baidu.com/s/1hq ...

  3. JavaScript学习笔记-基础语法、类型、变量

    基础语法.类型.变量   非数字值的判断方法:(因为Infinity和NaN他们不等于任何值,包括自身) 1.用x != x ,当x为NaN时才返回true; 2.用isNaN(x) ,当x为NaN或 ...

  4. java类 对象 和构造方法

    github地址:https://github.com/lily1010/java_learn/tree/master/dog java中对象和类 java中万物皆对象,比如说动物,里面有猫,狗,鱼等 ...

  5. windows server2008 安装问题、sqlserver安装设置默认账户问题

    1.Bios中的satadata设置开启 2账户和密码最好与本机相同

  6. 在内网中OWA第一次访问速度慢的问题

      当网络环境为内网时,有时访问OWA站点一直卡在Office Web App 那里. 这是因为SharePoint有一个证书需要联网检索 此环境为SharePoint 2013 通过下面的三个步骤 ...

  7. Sharepoint 2010 工作流启动时处理表单出错

    问题: Shareoint 2010 列表工作流启动时,显示“处理表单时出现严重错误”. Error Message-1: Object doesn't support property or met ...

  8. iOS 学习 - 10下载(3) NSURLSession 音乐 篇

    使用 NSURLSession 下载,需要注意的是文件下载文件之后会自动保存到一个临时目录,需要开发人员自己将此文件重新放到其他指定的目录中 // // ViewController.m // Web ...

  9. DOM 节点操作

    一.获取节点 方法名 只能document调用 返回单一的值 返回动态集合 getElementById √ √ getElementsByTagName √ getElementsByClassNa ...

  10. Unbuntu_14.04编译openjdk7

    今天有问题需要研究一下JVM,但系统挂了,只能重装.在ubuntu下再次编译JDK,大约2个半小时,将遇到的问题笔记整理一下. 1.下载Openjdk Source Code 我用的是http://d ...