SG函数模板(转)
sg[i]为0表示i节点先手必败。
首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。
例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。
对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Grundy函数g如下:g(x)=mex{ g(y) | y是x的后继 },这里的g(x)即sg[x]
例如:取石子问题,有1堆n个的石子,每次只能取{1,3,4}个石子,先取完石子者胜利,那么各个数的SG值为多少?
sg[0]=0,f[]={1,3,4},
x=1时,可以取走1-f{1}个石子,剩余{0}个,mex{sg[0]}={0},故sg[1]=1;
x=2时,可以取走2-f{1}个石子,剩余{1}个,mex{sg[1]}={1},故sg[2]=0;
x=3时,可以取走3-f{1,3}个石子,剩余{2,0}个,mex{sg[2],sg[0]}={0,0},故sg[3]=1;
x=4时,可以取走4-f{1,3,4}个石子,剩余{3,1,0}个,mex{sg[3],sg[1],sg[0]}={1,1,0},故sg[4]=2;
x=5时,可以取走5-f{1,3,4}个石子,剩余{4,2,1}个,mex{sg[4],sg[2],sg[1]}={2,0,1},故sg[5]=3;
以此类推.....
x 0 1 2 3 4 5 6 7 8....
sg[x] 0 1 0 1 2 3 2 0 1....
计算从1-n范围内的sg值,
s[]存储可以走的步数,s[0]表示可以有多少种走法
s[]需要从小到大排序
1.可选步数为1~m的连续整数,直接取模即可,sg[x] = x % (m+1);
2.可选步数为任意步,sg[x] = x;
3.可选步数为一系列不连续的数,用sg函数计算
模板1(dfs):
/*
s数组表示合法移动集合,从小到大排序。sNum合法移动个数
sg数组初始化为-1,对每个集合s仅需初始化1次
*/
const int MAXN = ;//s集合大小
const int MAXM = + ;//
int s[MAXN], sNum;
int sg[MAXM]; int dfsSg(int x)
{
if (sg[x] != -) {
return sg[x];
}
int i;
bool vis[MAXN];//sg值小于等于合法移动个数sNum memset(vis, false, sizeof(vis));
for (i = ; i < sNum && s[i] <= x; ++i) {
dfsSg(x - s[i]);
vis[sg[x - s[i]]] = true;
}
for (i = ; i <= sNum; ++i) {
if (!vis[i]) {
sg[x] = i;
break;
}
}
return sg[x];
}
模板2(打表):
求出所有sg值,有时没必要,用dfs就行
/*
s数组表示合法移动集合,从小到大排序。sNum合法移动个数
sg值对每个集合s仅需求一次
*/
const int MAXN = ;//s集合大小
const int MAXM = + ;//
int s[MAXN], sNum;
int sg[MAXM];
bool exist[MAXN];//sg值小于等于合法移动个数sNum void getSg(int n)
{
int i, j;
sg[] = ;//必败态
for (i = ; i <= n; ++i) {
memset(exist, false, sizeof(exist));
for (j = ; j < sNum && s[j] <= i; ++j) {
exist[sg[i - s[j]]] = true;
}
for (j = ; j <= sNum; ++j) {
if (!exist[j]) {
sg[i] = j;
break;
}
}
}
}
hdu 1848 Fibonacci again and again(sg)
取石子问题,一共有3堆石子,每次只能取斐波那契数个石子,先取完石子者胜利,问先手胜还是后手胜
#include <bits/stdc++.h>
using namespace std; /*
s数组表示合法移动集合,从小到大排序。sNum合法移动个数
sg数组初始化为-1,对每个集合s仅需初始化1次
*/
const int MAXN = ;//s集合大小
const int MAXM = + ;//
int s[MAXN], sNum;
int sg[MAXM]; int dfsSg(int x)
{
if (sg[x] != -) {
return sg[x];
}
int i;
bool vis[MAXN];//sg值小于等于合法移动个数sNum memset(vis, false, sizeof(vis));
for (i = ; i < sNum && s[i] <= x; ++i) {
dfsSg(x - s[i]);
vis[sg[x - s[i]]] = true;
}
for (i = ; i <= sNum; ++i) {
if (!vis[i]) {
sg[x] = i;
break;
}
}
return sg[x];
} int main()
{
int i;
s[] = ;
s[] = ;
for (i = ; i < MAXN; ++i) {
s[i] = s[i - ] + s[i - ];
//printf("%d %d\n", i, s[i]);
}
sNum = ;
int m, n, p;
int sum;
memset(sg, -, sizeof(sg));
while (~scanf("%d%d%d", &m, &n, &p)) {
if (m == && n == && p == ) {
break;
}
dfsSg(m);
dfsSg(n);
dfsSg(p);
sum = sg[m] ^ sg[n] ^ sg[p];
if (sum != ) {
printf("Fibo\n");
} else {
printf("Nacci\n");
}
}
return ;
}
#include <bits/stdc++.h>
using namespace std; /*
s数组表示合法移动集合,从小到大排序。sNum合法移动个数
sg值对每个集合s仅需求一次
*/
const int MAXN = ;//s集合大小
const int MAXM = + ;//
int s[MAXN], sNum;
int sg[MAXM];
bool exist[MAXN];//sg值小于等于合法移动个数sNum void getSg(int n)
{
int i, j;
sg[] = ;//必败态
for (i = ; i <= n; ++i) {
memset(exist, false, sizeof(exist));
for (j = ; j < sNum && s[j] <= i; ++j) {
exist[sg[i - s[j]]] = true;
}
for (j = ; j <= sNum; ++j) {
if (!exist[j]) {
sg[i] = j;
break;
}
}
}
} int main()
{
int i;
s[] = ;
s[] = ;
for (i = ; i < MAXN; ++i) {
s[i] = s[i - ] + s[i - ];
//printf("%d %d\n", i, s[i]);
}
sNum = ;
int m, n, p;
int sum;
getSg();
while (~scanf("%d%d%d", &m, &n, &p)) {
if (m == && n == && p == ) {
break;
}
sum = sg[m] ^ sg[n] ^ sg[p];
if (sum != ) {
printf("Fibo\n");
} else {
printf("Nacci\n");
}
}
return ;
}
SG函数模板(转)的更多相关文章
- hdu1536&&hdu3023 SG函数模板及其运用
S-Nim Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status ...
- hdu 1536 SG函数模板题
S-Nim Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Subm ...
- 【非原创】sg函数模板
学习博客:戳这里 解题模型: 1.把原游戏分解成多个独立的子游戏,则原游戏的SG函数值是它的所有子游戏的SG函数值的异或. 即sg(G)=sg(G1)^sg(G2)^...^sg(Gn) ...
- Light OJ 1199:Partitioning Game(SG函数模板)
Alice and Bob are playing a strange game. The rules of the game are: 1. Initially there are n p ...
- HDU 1847-Good Luck in CET-4 Everybody!-博弈SG函数模板
Problem Description 大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此.当然,作为在考场浸润了十几载 ...
- SG函数模板
这篇虽然是转载的,但代码和原文还是有出入,我认为我的代码更好些. 转载自:http://www.cnblogs.com/frog112111/p/3199780.html 最新sg模板: //MAXN ...
- hdu 1536 S-Nim(sg函数模板)
转载自:http://blog.csdn.net/sr_19930829/article/details/23446173 解题思路: 这个题折腾了两三天,参考了两个模板,在这之间折腾过来折腾过去,终 ...
- SG函数 模板
int get_SG(int x) { ) return SG[x]; ]={}; ;i<=n;i++) ) v[get_SG(x-s[i])]=; int i; ;v[i];i++); SG[ ...
- SG函数模板(洛谷2197nim游戏
#include <iostream> #include <cstdio> #include <queue> #include <algorithm> ...
随机推荐
- Hilbert space
Definition A Hilbert space H is a real or complex inner product space that is also a complete metric ...
- Grunt完成对LESS实时编译
安装 安装grunt需要先安装node.js. 之后需要借助npm来安装grunt-cli,在cmd中npm install -g grunt-cli.(测试grunt --version看是否正确显 ...
- js里function的apply vs. bind vs. call
js里除了直接调用obj.func()之外,还提供了另外3种调用方式:apply.bind.call,都在function的原型里.这3种方法的异同在stackoverflow的这个答案里说的最清楚, ...
- POI XSSF与HSSF的 使用区别
首次写博客,希望能坚持下去,一点一滴的积累,内容不多也不深,但愿我的分享,能帮助和我一样的新人们解决问题 最近给项目中添加了一个导入excel表格的功能,然而在功能开发结束后测试,发现报错. 报错信息 ...
- Java中正则表达式及其常用类Math、Calendar、Date、BigDecimal、BigInterger、System、Rondom的使用
1:正则表达式(理解) (1)就是符合一定规则的字符串 (2)常见规则 A:字符 x 字符 x.举例:'a'表示字符a \\ 反斜线字符. \n 新行(换行)符 ('\u000A') \r 回车符 ( ...
- (zz) 谷歌技术"三宝"之BigTable
006年的OSDI有两篇google的论文,分别是BigTable和Chubby.Chubby是一个分布式锁服务,基于Paxos算法:BigTable是一个用于管理结构化数据的分布式存储系统,构建在G ...
- Nodejs连接mysql
1.首先需要安装nodejs 的mysql包 npm install mysql 2.编写nodejs与mysql交互的代码 var mysql = require('mysql'); var TES ...
- hasLayout与BFC的触发条件
hasLayout与BFC是分别在IE和其他浏览器上的两个作用很相近的概念,在很多时候,我们需要触发它们去实现有些效果.例如清除浮动时需要触发hasLayout与BFC:很多自适应的两栏和三栏布局(两 ...
- iOS 根据UIImage 修改UIImageView Frame (包括截取图片中间部分)
iOS UIImageView 根据需求调整frame 1.图片的宽和高不相等,截取图片的中间部分,截取的部分Size明确 2.图片的宽度要等于其父视图的类的宽度,然后根据宽度计算高度,保证 图片不变 ...
- Unity3D 发布无边框exe
关于:Unity3D 发布无边框exe,Unity3D Build exe无边框 Unity发布windows版本 总是带着边框,很想给它去掉,笔者在网上查了一番,常见的有3中. 1:通过unity3 ...