hdu.1043.Eight (打表 || 双广 + 奇偶逆序)
Eight
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 14380 Accepted Submission(s): 4044 Special Judge
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x
where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
- 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12 13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x r-> d-> r->
The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.
Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).
In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three arrangement.
1 2 3 x 4 6 7 5 8
is described by this list:
1 2 3 x 4 6 7 5 8
- #include<stdio.h>
- #include<string.h>
- #include<algorithm>
- #include<ctype.h>
- typedef long long ll ;
- int map[][] ;
- char mp[] ;
- int l , r , l1 , r1 ;
- int flag ;
- int anti ;
- int move[][] = {{,} , {-,} , {,} , {,-}} ;
- const int mod = ;
- struct node
- {
- int x , y , nxt ;
- int map[][] ;
- } b[mod];
- struct hash
- {
- ll w , id ;
- int nxt ;
- }e[mod * ];
- int H[mod * ] , E ;
- void insert (ll x , int id)
- {
- int y = x % mod ;
- if (y < ) y += mod ;
- e[++ E].w = x ;
- e[E].id = id ;
- e[E].nxt = H[y] ;
- H[y] = E ;
- }
- int find (ll x)
- {
- int y = x % mod ;
- if (y < ) y += mod ;
- for (int i = H[y] ; ~ i ; i = e[i].nxt ) {
- if (e[i].w == x)
- return e[i].id ;
- }
- return - ;
- }
- void table ()
- {
- node ans , tmp ;
- E = - ; memset (H , - , sizeof (H) ) ;
- l1 = , r1= ;
- b[l1].x = , b[l1].y = , b[l1].nxt = - ;
- ll sum = ;
- for (int i = ; i < ; i ++) for (int j = ; j < ; j ++) b[l1].map[i][j] = i * + j + ;
- insert ( , ) ;
- while (l1 != r1) {
- ans = b[l1] ;
- for (int i = ; i < ; i ++) {
- tmp.x = ans.x + move[i][] ; tmp.y = ans.y + move[i][] ;
- if (tmp.x < || tmp.y < || tmp.x >= || tmp.y >= ) continue ;
- for (int i = ; i < ; i ++) for (int j = ; j < ; j ++) tmp.map[i][j] = ans.map[i][j] ;
- std::swap (tmp.map[ans.x][ans.y] , tmp.map[tmp.x][tmp.y]) ;
- sum = ;
- for (int i = ; i < ; i ++) for (int j = ; j < ; j ++) sum = sum * + tmp.map[i][j] ;
- if (find (sum) != - ) continue ;
- insert (sum , r1 ) ;
- tmp.nxt = l1 ;
- b[r1 ++] = tmp ;
- }
- l1 ++ ;
- }
- }
- void solve (int u)
- {
- if (u == -) return ;
- int t = b[u].nxt ;
- if (t != -) {
- int x = b[t].x - b[u].x , y = b[t].y - b[u].y ;
- if (x == ) printf ("d") ;
- else if (x == -) printf ("u") ;
- else if (y == ) printf ("r") ;
- else if (y == - ) printf ("l") ;
- }
- solve (t) ;
- }
- int main ()
- {
- freopen ("a.txt" , "r" , stdin ) ;
- table () ;
- while (gets (mp) != NULL) {
- int tot = ;
- for (int i = ; mp[i] != '\0' ; i ++) {
- if (mp[i] != ' ') {
- if (isdigit (mp[i])) {
- map[tot / ][tot % ] = mp[i] - '' ;
- }
- else map[tot / ][tot % ] = ;
- tot ++ ;
- }
- }
- ll sum = ;
- for (int i = ; i < ; i ++) for (int j = ; j < ; j ++) sum = sum * + map[i][j] ;
- anti = find (sum) ;
- if (anti != -) solve (anti) ;
- else printf ("unsolvable") ;
- puts ("") ;
- }
- return ;
- }
打表思路很简单,也是为了对抗unsolve这种情况,从123456789最终状态产生所有状态,即可.
奇偶逆序:
逆序数:也就是说,对于n个不同的元素,先规定各元素之间有一个标准次序(例如n个 不同的自然数,可规定从小到大为标准次序),于是在这n个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说有1个逆序。一个排列中所有逆序总数叫做这个排列的逆序数。
结论:(是除去移动元素,(这里是9))
对源状态A与目标状态B进行规范化,使得两矩阵的元素0的位置相同;记为新的源状态A'与目标状态B';
若A'与B'的逆序对的奇偶性相同(即A'与B1的逆序对的奇偶性相同),则A'必定可能转化为B',即A可以转化到B;
若A'与B'的逆序对的奇偶性不同(即A'与B2的逆序对的奇偶性相同),则A'必定不可能转化为B',即A不可以转化到B;
也就是为了对抗unsolve.
然后用双广就OK了.
hdu.1043.Eight (打表 || 双广 + 奇偶逆序)的更多相关文章
- Eight hdu 1043 八数码问题 双搜
Eight Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Subm ...
- POJ-1077 HDU 1043 HDU 3567 Eight (BFS预处理+康拓展开)
思路: 这三个题是一个比一个令人纠结呀. POJ-1077 爆搜可以过,94ms,注意不能用map就是了. #include<iostream> #include<stack> ...
- HDU 1403 Eight&POJ 1077(康拖,A* ,BFS,双广)
Eight Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submis ...
- hdu 1401(单广各种卡的搜索题||双广秒速)
Solitaire Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total S ...
- HDU 1043 & POJ 1077 Eight(康托展开+BFS+预处理)
Eight Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 30176 Accepted: 13119 Special ...
- HDU 1043 & POJ 1077 Eight(康托展开+BFS | IDA*)
Eight Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 30176 Accepted: 13119 Special ...
- HDU 1043 Eight 八数码问题 A*算法(经典问题)
HDU 1043 Eight 八数码问题(经典问题) 题意 经典问题,就不再进行解释了. 这里主要是给你一个状态,然后要你求其到达\(1,2,3,4,5,6,7,8,x\)的转移路径. 解题思路 这里 ...
- HDU 1043 八数码(八境界)
看了这篇博客的讲解,挺不错的.http://www.cnblogs.com/goodness/archive/2010/05/04/1727141.html 判断无解的情况(写完七种境界才发现有直接判 ...
- Eight POJ - 1077 HDU - 1043 八数码
Eight POJ - 1077 HDU - 1043 八数码问题.用hash(康托展开)判重 bfs(TLE) #include<cstdio> #include<iostream ...
随机推荐
- codevs 1013 求先序排列(二叉树遍历)
传送门 Description 给出一棵二叉树的中序与后序排列.求出它的先序排列.(约定树结点用不同的大写字母表示,长度<=8). Input 两个字符串,分别是中序和后序(每行一个) Outp ...
- HDU 1022 Train Problem I(栈模拟)
传送门 Description As the new term comes, the Ignatius Train Station is very busy nowadays. A lot of st ...
- 总结jQuery选择器
基本选择器 1. id选择器(指定id元素) 2. class选择器(遍历css类元素) 3. element选择器(遍历html元素) 4. * 选择器(遍历所有元素) 5. 并列选择器$('p,d ...
- 淘淘商城基于maven和svn的理解
首先了解下maven和svn是什么: Maven是一个项目的管理工具,它包含了一个项目对象模型 (Project Object Model),一组标准集合,一个项目的生命周期(Project Life ...
- 手写控件,frame,center和bounds属性
一.手写控件 1.手写控件的步骤 (1)使用相应的控件类创建控件对象 (2)设置该控件的各种属性 (3)添加控件到视图中 (4)如果是button等控件,还需考虑控件的单击事件等 (5)注意:View ...
- PHP 数组(遍历)
数组定义$attr = array(); //定义一个空的数组$attr = array(1,2,3,4); //定义一个有值的数组$attr[0]="aa";$attr[1]=& ...
- Jquery 学习之基础一
1.添加一个CSS类 $("button").click(function(){ $("#div1").addClass("important bl ...
- DllImport dll中有些啥函数 及 dll中是否用到了别的dll
在加载dll的时候不知道dll中有哪些接口怎么办,或者使用别人封装的东西时报出类似于“无法在 DLL“XXX.dll”中找到名为“XXX函数”的入口点.” 1.通过LordPE这个软件来看dl ...
- JavaWeb学习笔记——开发动态WEB资源(五)servlet身份验证
本工程的功能是实现Javaweb的servlet身份验证 一下是login.html文件中的代码 <!DOCTYPE html> <html> <head> < ...
- JS数组类型检测
在强类型语言,数组类型检测是非常容易的事情(typeof就可以解决),而在弱语言JS数据类型就很容易混淆了. JS中常见的数据类型有:number.string.boolean.undefined.f ...