A.Kaw矩阵代数初步学习笔记 2. Vectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第2章课程讲义下载(PDF)
Summary
- Vector
A vector is a collection of numbers in a definite order. If it is a collection of $n$ numbers, it is called a $n$-dimensional vector. For example, $$\vec{A} = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix},\ \vec{B} = \begin{bmatrix}4 & 5 & 6 \end{bmatrix}.$$ - Addition of vectors
Two vectors can be added only if they are of the same dimension and the addition is given by $$\vec{A} + \vec{B} = \begin{bmatrix}a_1\\ \vdots\\ a_n \end{bmatrix} + \begin{bmatrix}b_1\\ \vdots\\ b_n \end{bmatrix} = \begin{bmatrix}a_1+b_1\\ \vdots\\ a_n + b_n \end{bmatrix}$$ - Null vector
A null vector (i.e. zero vector) is where all the components of the vector are zero. For example, $$\begin{bmatrix}0\\ 0\\ 0\\ 0 \end{bmatrix}$$ - Unit vector
A unit vector $\vec{U}$ is defined as $$\vec{U} = \begin{bmatrix}u_1\\ \vdots\\ u_n \end{bmatrix}$$ where $$\sqrt{u_1^2 + \cdots + u_{n}^2 = 1}$$ - Scalar multiplication of vectors
If $k$ is a scalar and $\vec{A}$ is a $n$-dimensional vector, then $$k\vec{A} = k\begin{bmatrix}a_1\\ \vdots\\ a_n \end{bmatrix} = \begin{bmatrix}ka_1\\ \vdots\\ ka_n \end{bmatrix}$$ - Linear combination of vectors
Given $\vec{A}_1$, $\vec{A}_2$, $\cdots$, $\vec{A}_m$ as $m$ vectors of same dimension $n$, and if $k_1$, $k_2$, $\cdots$, $k_m$ are scalars, then $$k_1\vec{A}_1 + k_2\vec{A}_2 + \cdots + k_m\vec{A}_m$$ is a linear combination of the $m$ vectors. - Linearly independent vectors
A set of vectors $\vec{A}_1$, $\vec{A}_2$, $\cdots$, $\vec{A}_m$ are considered to be linearly independent if $$k_1\vec{A}_1 + k_2\vec{A}_2 + \cdots + k_m\vec{A}_m = \vec{0}$$ has only one solution of $k_1 = k_2 = \cdots = k_m =0$. - Rank
From a set of $n$-dimension vectors, the maximum number of linearly independent vectors in the set is called the rank of the set of vectors. Note that the rank of the vectors can never be greater than the vectors dimension. - Dot product
Let $\vec{A} = \begin{bmatrix}a_1, & \cdots, &a_n\end{bmatrix}$ and $\vec{B} = \begin{bmatrix}b_1, & \cdots, &b_n\end{bmatrix}$ be two $n$-dimensional vectors. Then the dot product (i.e. inner product) of the two vectors $\vec{A}$ and $\vec{B}$ is defined as $$\vec{A}\cdot\vec{B} = a_1b_1+\cdots+a_nb_n = \sum_{i=1}^{n}a_ib_i$$ - Some useful results
- If a set of vectors contains the null vector, the set of vectors is linearly dependent.
- If a set of $m$ vectors is linearly independent, then a subset of the $m$ vectors also has to be linearly independent.
- If a set of vectors is linearly dependent, then at least one vector can be written as a linear combination of others.
- If the dimension of a set of vectors is less than the number of vectors in the set, then the set of vectors is linearly dependent.
Selected Problems
1. For $$\vec{A} = \begin{bmatrix}2\\9\\-7 \end{bmatrix},\ \vec{B} = \begin{bmatrix}3\\2\\5 \end{bmatrix},\ \vec{C} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$$ find $\vec{A} + \vec{B}$ and $2\vec{A} - 3\vec{B} + \vec{C}$.
Solution:
$$\vec{A} + \vec{B} = \begin{bmatrix}2\\9\\-7 \end{bmatrix} + \begin{bmatrix}3\\2\\5 \end{bmatrix} = \begin{bmatrix}5\\ 11\\ -2 \end{bmatrix}$$ $$2\vec{A} - 3\vec{B} + \vec{C} = 2\begin{bmatrix}2\\9\\-7 \end{bmatrix} - 3\begin{bmatrix}3\\2\\5 \end{bmatrix} + \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} = \begin{bmatrix} -4\\ 13\\ -28 \end{bmatrix}$$
2. Are $$\vec{A} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix},\ \vec{B} = \begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix},\ \vec{C} = \begin{bmatrix} 1\\ 4\\ 25 \end{bmatrix}$$ linearly independent? What is the rank of the above set of vectors?
Solution:
Suppose $$x_1\vec{A} + x_2\vec{B} + x_3\vec{C} = 0$$ $$\Rightarrow x_1\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} + x_2\begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix} + x_3\begin{bmatrix} 1\\ 4\\ 25 \end{bmatrix} = 0$$ The coefficient matrix is $$\begin{bmatrix} 1& 1& 1\\ 1& 2& 4\\ 1& 5& 25 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 1& 1\\ 0& 1& 3\\ 0& 4& 24 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 1& 1\\ 0& 1& 3\\ 0& 1& 6 \end{bmatrix}\Rightarrow \begin{bmatrix} 1& 0& -5\\ 0& 0& -3\\ 0& 1& 6 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix} 1& 0& -5\\ 0& 0& 1\\ 0& 1& 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 0& 0\\ 0& 0& 1\\ 0& 1& 0 \end{bmatrix} \Rightarrow x_1=x_2=x_3=0$$ Thus they are linearly independent and the rank is 3.
3. Are $$\vec{A} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix},\ \vec{B} = \begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix},\ \vec{C} = \begin{bmatrix} 3\\ 5\\ 7 \end{bmatrix}$$ linearly independent? What is the rank of the above set of vectors?
Solution:
Suppose $$x_1\vec{A} + x_2\vec{B} + x_3\vec{C} = 0$$ $$\Rightarrow x_1\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} + x_2\begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix} + x_3\begin{bmatrix} 3\\ 5\\ 7 \end{bmatrix} = 0$$ The coefficient matrix is $$\begin{bmatrix} 1& 1& 3\\ 1& 2& 5\\ 1& 5& 7 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 1& 1\\ 0& 1& 2\\ 0& 4& 4 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 1& 1\\ 0& 1& 2\\ 0& 1& 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 0& 0\\ 0& 0& 1\\ 0& 1& 1 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix} 1& 0& 0\\ 0& 0& 1\\ 0& 1& 0 \end{bmatrix} \Rightarrow x_1=x_2=x_3=0$$ Thus they are linearly independent and the rank is 3.
4. Are $$\vec{A} = \begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix},\ \vec{B} = \begin{bmatrix} 2\\ 4\\ 10 \end{bmatrix},\ \vec{C} = \begin{bmatrix} 1.1\\ 2.2\\ 5.5 \end{bmatrix}$$ linearly independent? What is the rank of the above set of vectors?
Solution:
Suppose $$x_1\vec{A} + x_2\vec{B} + x_3\vec{C} = 0$$ $$\Rightarrow x_1\begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix} + x_2\begin{bmatrix} 2\\ 4\\ 10 \end{bmatrix} + x_3\begin{bmatrix} 1.1\\ 2.2\\ 5.5 \end{bmatrix} = 0$$ The coefficient matrix is $$\begin{bmatrix} 1& 2& 1.1\\ 2& 4& 2.2\\ 5& 10& 5.5 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 2& 1.1\\ 0& 0& 0\\ 0& 0& 0 \end{bmatrix} \Rightarrow x_1 = -2x_2-1.1x_3$$ which exists non-trivial solutions. Thus they are linearly dependent and the rank is 1.
5. Find the dot product of $\vec{A} = \begin{bmatrix}2& 1 & 2.5 &3 \end{bmatrix}$ and $\vec{B} = \begin{bmatrix}-3 & 2 & 1 & 2.5 \end{bmatrix}$.
Solution:
$$\vec{A}\cdot\vec{B} = 2\times(-3) + 1\times2 + 2.5\times1 + 3\times2.5 = 6$$
6. If $\vec{u}$, $\vec{v}$, $\vec{w}$ are three non-zero vector of 2-dimensions, then are they independent?
Solution:
Suppose the three 2-dimensional non-zero vectors are $\vec{u}=\begin{bmatrix}u_1\\ u_2\end{bmatrix}$, $\vec{v}=\begin{bmatrix}v_1\\ v_2\end{bmatrix}$, and $\vec{w}=\begin{bmatrix}w_1\\ w_2\end{bmatrix}$. We have $$x_1\vec{u} + x_2\vec{v} + x_3\vec{w} = 0$$ $$\Rightarrow \begin{cases} x_1u_1+x_2v_1+x_3w_1 = 0 \\ x_1u_2+ x_2v_2 + x_3 w_3 = 0\end{cases}$$ That is, the number of unknown is greater than the number of equations. Thus it has non-trivial solutions for $x_1$, $x_2$, $x_3$, which means they are linearly dependent.
In general cases, if the dimension of a set of vectors is less than the number of vectors in the set, then the set of vectors is linearly dependent.
7. $\vec{u}$ and $\vec{v}$ are two non-zero vectors of dimension $n$. Prove that if $\vec{u}$ and $\vec{v}$ are linearly dependent, there is a scalar $q$ such that $\vec{v} = q\vec{u}$.
Solution:
Suppose we have $$x_1\vec{u} + x_2\vec{v} = 0$$ Note that neither $x_1$ nor $x_2$ is zero, otherwise for instance, $x_1 = 0$ and $x_2\neq0$. Then we have $x_2\vec{v} = 0\Rightarrow x_2 = 0$ or $\vec{v} = 0$. Either of these is contradiction (both of the vectors are non-zero). Thus $x_1\neq0$ and $x_2\neq0$, and we have $$\vec{v} = -{x_1\over x_2}\vec{u}$$ that is, $\vec{v} = q\vec{u}$, where $q=-{x_1\over x_2}$.
8. $\vec{u}$ and $\vec{v}$ are two non-zero vectors of dimension $n$. Prove that if there is a scalar $q$ such that $\vec{v} = q\vec{u}$, then $\vec{u}$ and $\vec{v}$ are linearly dependent.
Solution:
Since $$\vec{v} = q\vec{u} \Rightarrow q\vec{u}-\vec{v} = 0$$ Note that $q\neq0$, otherwise $\vec{v}=0$ which is contradiction.
Thus $\vec{u}$ and $\vec{v}$ are linearly dependent.
9. What is the magnitude of the vector $\vec{V}=\begin{bmatrix}5 & -3 & 2 \end{bmatrix}$?
Solution:
$$|\vec{V}| = \sqrt{5^2+(-3)^2+2^2} = \sqrt{38}$$
10. What is the rank of the set of the vectors $$\begin{bmatrix}2\\3\\7 \end{bmatrix},\ \begin{bmatrix}6\\9\\21 \end{bmatrix},\ \begin{bmatrix}3\\2\\7 \end{bmatrix}.$$
Solution:
$$\begin{bmatrix}2& 6& 3\\ 3& 9& 2\\ 7& 21& 7 \end{bmatrix} \Rightarrow\begin{cases}2R_2-3R_1\\ {1\over7}R_3\end{cases}\begin{bmatrix}2& 6& 3\\ 0& 0& -5\\ 1& 3& 1 \end{bmatrix}$$ $$\Rightarrow\begin{cases}R_1-2R_3\\ -{1\over5}R_2\end{cases}\begin{bmatrix}0& 0& 1\\ 0& 0& 1\\ 1& 3& 1 \end{bmatrix} \Rightarrow\begin{cases}R_1-R_2\\ R_3-R_2 \end{cases}\begin{bmatrix}0& 0& 0\\ 0& 0& 1\\ 1& 3& 0 \end{bmatrix}$$ Thus the rank of this set of vectors is 2.
11. If $\vec{A} = \begin{bmatrix}5 & 2 & 3\end{bmatrix}$ and $\vec{B} = \begin{bmatrix}6 & -7 & 3\end{bmatrix}$, then what is $4\vec{A} + 5\vec{B}$?
Solution:
$$4\vec{A} + 5\vec{B} = 4\begin{bmatrix}5 & 2 & 3\end{bmatrix} + 5\begin{bmatrix}6 & -7 & 3\end{bmatrix}$$ $$=\begin{bmatrix}20+30 & 8-35 & 12+15\end{bmatrix} = \begin{bmatrix}50 & -27 & 27\end{bmatrix}$$
12. What is the dot product of two vectors $$\begin{cases}\vec{A} = 3i+5j+7k\\ \vec{B}=11i+13j+17k\end{cases}$$
Solution:
$$\vec{A}\cdot\vec{B} = 3\times11+5\times13+7\times17 = 217$$
13. What is the angle between two vectors $$\begin{cases}\vec{A} = 3i+5j+7k\\ \vec{B}=11i+13j+17k\end{cases}$$
Solution:
$$\cos < \vec{A}, \vec{B} > = {\vec{A}\cdot\vec{B}\over |\vec{A}|\cdot|\vec{B}|}$$ $$={217\over\sqrt{9+25+49}\cdot\sqrt{121+169+289}} = 0.9898774$$ Thus the angle between the two vectors is $\arccos0.9898774$.
A.Kaw矩阵代数初步学习笔记 2. Vectors的更多相关文章
- A.Kaw矩阵代数初步学习笔记 5. System of Equations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 7. LU Decomposition
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 1. Introduction
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
随机推荐
- variable-precision SWAR算法介绍
BITCOUNT命令是统计一个位数组中非0进制位的数量,数学上称作:”Hanmming Weight“ 目前效率最好的为variable-precision SWAR算法,可以常数时间内计算出多个字节 ...
- ASP.NET + SqlSever 大数据解决方案 PK HADOOP
半个月前看到博客园有人说.NET不行那篇文章,我只想说你们有时间去抱怨不如多写些实在的东西. 1.SQLSERVER优点和缺点? 优点:支持索引.事务.安全性以及容错性高 缺点:数据量达到100万以 ...
- CSS高级知识
1.CSS变换 2.CSS动画 3.CSS高级特性及兼容性:http://caniuse.com/
- JSON返回DateTime/Date('123123123')/解决办法
Date.prototype.format = function (format) //author: meizz { var o = { "M+& ...
- Python【map、reduce、filter】内置函数使用说明(转载)
转自:http://www.blogjava.net/vagasnail/articles/301140.html?opt=admin 介绍下Python 中 map,reduce,和filter 内 ...
- 【JavaEE企业应用实战学习记录】struts2实现登录并获取各个范围的数据
package sanglp; import com.opensymphony.xwork2.*; /** * Created by Administrator on 2016/10/6. */ pu ...
- 收藏Javascript中常用的55个经典技巧
1. oncontextmenu="window.event.returnValue=false" 将彻底屏蔽鼠标右键 <table border oncontextmenu ...
- Android-动画简介
Android中动画分为3种: ween Animation:通过对场景里的对象不断做图像变换(平移.缩放.旋转)产生动画效果,即是一种渐变动画: 也称View动画:也叫渐变动画,针对View的动画, ...
- MySQL多实例
http://www.kancloud.cn/digest/mysqlsummary/132842http://crazy123.blog.51cto.com/1029610/1611887/ htt ...
- [转]扩展RBAC用户角色权限设计方案
原文地址:http://www.iteye.com/topic/930648 RBAC(Role-Based Access Control,基于角色的访问控制),就是用户通过角色与权限进行关联.简单地 ...