“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第2章课程讲义下载(PDF)

Summary

  • Vector
    A vector is a collection of numbers in a definite order. If it is a collection of $n$ numbers, it is called a $n$-dimensional vector. For example, $$\vec{A} = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix},\ \vec{B} = \begin{bmatrix}4 & 5 & 6 \end{bmatrix}.$$
  • Addition of vectors
    Two vectors can be added only if they are of the same dimension and the addition is given by $$\vec{A} + \vec{B} = \begin{bmatrix}a_1\\ \vdots\\ a_n \end{bmatrix} + \begin{bmatrix}b_1\\ \vdots\\ b_n \end{bmatrix} = \begin{bmatrix}a_1+b_1\\ \vdots\\ a_n + b_n \end{bmatrix}$$
  • Null vector
    A null vector (i.e. zero vector) is where all the components of the vector are zero. For example, $$\begin{bmatrix}0\\ 0\\ 0\\ 0 \end{bmatrix}$$
  • Unit vector
    A unit vector $\vec{U}$ is defined as $$\vec{U} = \begin{bmatrix}u_1\\ \vdots\\ u_n \end{bmatrix}$$ where $$\sqrt{u_1^2 + \cdots + u_{n}^2 = 1}$$
  • Scalar multiplication of vectors
    If $k$ is a scalar and $\vec{A}$ is a $n$-dimensional vector, then $$k\vec{A} = k\begin{bmatrix}a_1\\ \vdots\\ a_n \end{bmatrix} = \begin{bmatrix}ka_1\\ \vdots\\ ka_n \end{bmatrix}$$
  • Linear combination of vectors
    Given $\vec{A}_1$, $\vec{A}_2$, $\cdots$, $\vec{A}_m$ as $m$ vectors of same dimension $n$, and if $k_1$, $k_2$, $\cdots$, $k_m$ are scalars, then $$k_1\vec{A}_1 + k_2\vec{A}_2 + \cdots + k_m\vec{A}_m$$ is a linear combination of the $m$ vectors.
  • Linearly independent vectors
    A set of vectors $\vec{A}_1$, $\vec{A}_2$, $\cdots$, $\vec{A}_m$ are considered to be linearly independent if $$k_1\vec{A}_1 + k_2\vec{A}_2 + \cdots + k_m\vec{A}_m = \vec{0}$$ has only one solution of $k_1 = k_2 = \cdots = k_m =0$.
  • Rank
    From a set of $n$-dimension vectors, the maximum number of linearly independent vectors in the set is called the rank of the set of vectors. Note that the rank of the vectors can never be greater than the vectors dimension.
  • Dot product
    Let $\vec{A} = \begin{bmatrix}a_1, & \cdots, &a_n\end{bmatrix}$ and $\vec{B} = \begin{bmatrix}b_1, & \cdots, &b_n\end{bmatrix}$ be two $n$-dimensional vectors. Then the dot product (i.e. inner product) of the two vectors $\vec{A}$ and $\vec{B}$ is defined as $$\vec{A}\cdot\vec{B} = a_1b_1+\cdots+a_nb_n = \sum_{i=1}^{n}a_ib_i$$
  • Some useful results
    • If a set of vectors contains the null vector, the set of vectors is linearly dependent.
    • If a set of $m$ vectors is linearly independent, then a subset of the $m$ vectors also has to be linearly independent.
    • If a set of vectors is linearly dependent, then at least one vector can be written as a linear combination of others.
    • If the dimension of a set of vectors is less than the number of vectors in the set, then the set of vectors is linearly dependent.

Selected Problems

1. For $$\vec{A} = \begin{bmatrix}2\\9\\-7 \end{bmatrix},\ \vec{B} = \begin{bmatrix}3\\2\\5 \end{bmatrix},\ \vec{C} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$$ find $\vec{A} + \vec{B}$ and $2\vec{A} - 3\vec{B} + \vec{C}$.

Solution:
$$\vec{A} + \vec{B} = \begin{bmatrix}2\\9\\-7 \end{bmatrix} + \begin{bmatrix}3\\2\\5 \end{bmatrix} = \begin{bmatrix}5\\ 11\\ -2 \end{bmatrix}$$ $$2\vec{A} - 3\vec{B} + \vec{C} = 2\begin{bmatrix}2\\9\\-7 \end{bmatrix} - 3\begin{bmatrix}3\\2\\5 \end{bmatrix} + \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} = \begin{bmatrix} -4\\ 13\\ -28 \end{bmatrix}$$

2. Are $$\vec{A} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix},\ \vec{B} = \begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix},\ \vec{C} = \begin{bmatrix} 1\\ 4\\ 25 \end{bmatrix}$$ linearly independent? What is the rank of the above set of vectors?

Solution:
Suppose $$x_1\vec{A} + x_2\vec{B} + x_3\vec{C} = 0$$ $$\Rightarrow x_1\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} + x_2\begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix} + x_3\begin{bmatrix} 1\\ 4\\ 25 \end{bmatrix} = 0$$ The coefficient matrix is $$\begin{bmatrix} 1& 1& 1\\ 1& 2& 4\\ 1& 5& 25 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 1& 1\\ 0& 1& 3\\ 0& 4& 24 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 1& 1\\ 0& 1& 3\\ 0& 1& 6 \end{bmatrix}\Rightarrow \begin{bmatrix} 1& 0& -5\\ 0& 0& -3\\ 0& 1& 6 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix} 1& 0& -5\\ 0& 0& 1\\ 0& 1& 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 0& 0\\ 0& 0& 1\\ 0& 1& 0 \end{bmatrix} \Rightarrow x_1=x_2=x_3=0$$ Thus they are linearly independent and the rank is 3.

3. Are $$\vec{A} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix},\ \vec{B} = \begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix},\ \vec{C} = \begin{bmatrix} 3\\ 5\\ 7 \end{bmatrix}$$ linearly independent? What is the rank of the above set of vectors?

Solution:
Suppose $$x_1\vec{A} + x_2\vec{B} + x_3\vec{C} = 0$$ $$\Rightarrow x_1\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} + x_2\begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix} + x_3\begin{bmatrix} 3\\ 5\\ 7 \end{bmatrix} = 0$$ The coefficient matrix is $$\begin{bmatrix} 1& 1& 3\\ 1& 2& 5\\ 1& 5& 7 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 1& 1\\ 0& 1& 2\\ 0& 4& 4 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 1& 1\\ 0& 1& 2\\ 0& 1& 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 0& 0\\ 0& 0& 1\\ 0& 1& 1 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix} 1& 0& 0\\ 0& 0& 1\\ 0& 1& 0 \end{bmatrix} \Rightarrow x_1=x_2=x_3=0$$ Thus they are linearly independent and the rank is 3.

4. Are $$\vec{A} = \begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix},\ \vec{B} = \begin{bmatrix} 2\\ 4\\ 10 \end{bmatrix},\ \vec{C} = \begin{bmatrix} 1.1\\ 2.2\\ 5.5 \end{bmatrix}$$ linearly independent? What is the rank of the above set of vectors?

Solution:
Suppose $$x_1\vec{A} + x_2\vec{B} + x_3\vec{C} = 0$$ $$\Rightarrow x_1\begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix} + x_2\begin{bmatrix} 2\\ 4\\ 10 \end{bmatrix} + x_3\begin{bmatrix} 1.1\\ 2.2\\ 5.5 \end{bmatrix} = 0$$ The coefficient matrix is $$\begin{bmatrix} 1& 2& 1.1\\ 2& 4& 2.2\\ 5& 10& 5.5 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 2& 1.1\\ 0& 0& 0\\ 0& 0& 0 \end{bmatrix} \Rightarrow x_1 = -2x_2-1.1x_3$$ which exists non-trivial solutions. Thus they are linearly dependent and the rank is 1.

5. Find the dot product of $\vec{A} = \begin{bmatrix}2& 1 & 2.5 &3 \end{bmatrix}$ and $\vec{B} = \begin{bmatrix}-3 & 2 & 1 & 2.5 \end{bmatrix}$.

Solution:
$$\vec{A}\cdot\vec{B} = 2\times(-3) + 1\times2 + 2.5\times1 + 3\times2.5 = 6$$

6. If $\vec{u}$, $\vec{v}$, $\vec{w}$ are three non-zero vector of 2-dimensions, then are they independent?

Solution:
Suppose the three 2-dimensional non-zero vectors are $\vec{u}=\begin{bmatrix}u_1\\ u_2\end{bmatrix}$, $\vec{v}=\begin{bmatrix}v_1\\ v_2\end{bmatrix}$, and $\vec{w}=\begin{bmatrix}w_1\\ w_2\end{bmatrix}$. We have $$x_1\vec{u} + x_2\vec{v} + x_3\vec{w} = 0$$ $$\Rightarrow \begin{cases} x_1u_1+x_2v_1+x_3w_1 = 0 \\ x_1u_2+ x_2v_2 + x_3 w_3 = 0\end{cases}$$ That is, the number of unknown is greater than the number of equations. Thus it has non-trivial solutions for $x_1$, $x_2$, $x_3$, which means they are linearly dependent.
In general cases, if the dimension of a set of vectors is less than the number of vectors in the set, then the set of vectors is linearly dependent.

7. $\vec{u}$ and $\vec{v}$ are two non-zero vectors of dimension $n$. Prove that if $\vec{u}$ and $\vec{v}$ are linearly dependent, there is a scalar $q$ such that $\vec{v} = q\vec{u}$.

Solution:
Suppose we have $$x_1\vec{u} + x_2\vec{v} = 0$$ Note that neither $x_1$ nor $x_2$ is zero, otherwise for instance, $x_1 = 0$ and $x_2\neq0$. Then we have $x_2\vec{v} = 0\Rightarrow x_2 = 0$ or $\vec{v} = 0$. Either of these is contradiction (both of the vectors are non-zero). Thus $x_1\neq0$ and $x_2\neq0$, and we have $$\vec{v} = -{x_1\over x_2}\vec{u}$$ that is, $\vec{v} = q\vec{u}$, where $q=-{x_1\over x_2}$.

8. $\vec{u}$ and $\vec{v}$ are two non-zero vectors of dimension $n$. Prove that if there is a scalar $q$ such that $\vec{v} = q\vec{u}$, then $\vec{u}$ and $\vec{v}$ are linearly dependent.

Solution:
Since $$\vec{v} = q\vec{u} \Rightarrow q\vec{u}-\vec{v} = 0$$ Note that $q\neq0$, otherwise $\vec{v}=0$ which is contradiction.
Thus $\vec{u}$ and $\vec{v}$ are linearly dependent.

9. What is the magnitude of the vector $\vec{V}=\begin{bmatrix}5 & -3 & 2 \end{bmatrix}$?

Solution:
$$|\vec{V}| = \sqrt{5^2+(-3)^2+2^2} = \sqrt{38}$$

10. What is the rank of the set of the vectors $$\begin{bmatrix}2\\3\\7 \end{bmatrix},\ \begin{bmatrix}6\\9\\21 \end{bmatrix},\ \begin{bmatrix}3\\2\\7 \end{bmatrix}.$$
Solution:
$$\begin{bmatrix}2& 6& 3\\ 3& 9& 2\\ 7& 21& 7 \end{bmatrix} \Rightarrow\begin{cases}2R_2-3R_1\\ {1\over7}R_3\end{cases}\begin{bmatrix}2& 6& 3\\ 0& 0& -5\\ 1& 3& 1 \end{bmatrix}$$ $$\Rightarrow\begin{cases}R_1-2R_3\\ -{1\over5}R_2\end{cases}\begin{bmatrix}0& 0& 1\\ 0& 0& 1\\ 1& 3& 1 \end{bmatrix} \Rightarrow\begin{cases}R_1-R_2\\ R_3-R_2 \end{cases}\begin{bmatrix}0& 0& 0\\ 0& 0& 1\\ 1& 3& 0 \end{bmatrix}$$ Thus the rank of this set of vectors is 2.

11. If $\vec{A} = \begin{bmatrix}5 & 2 & 3\end{bmatrix}$ and $\vec{B} = \begin{bmatrix}6 & -7 & 3\end{bmatrix}$, then what is $4\vec{A} + 5\vec{B}$?

Solution:
$$4\vec{A} + 5\vec{B} = 4\begin{bmatrix}5 & 2 & 3\end{bmatrix} + 5\begin{bmatrix}6 & -7 & 3\end{bmatrix}$$ $$=\begin{bmatrix}20+30 & 8-35 & 12+15\end{bmatrix} = \begin{bmatrix}50 & -27 & 27\end{bmatrix}$$

12. What is the dot product of two vectors $$\begin{cases}\vec{A} = 3i+5j+7k\\ \vec{B}=11i+13j+17k\end{cases}$$
Solution:
$$\vec{A}\cdot\vec{B} = 3\times11+5\times13+7\times17 = 217$$

13. What is the angle between two vectors $$\begin{cases}\vec{A} = 3i+5j+7k\\ \vec{B}=11i+13j+17k\end{cases}$$

Solution:
$$\cos < \vec{A}, \vec{B} > = {\vec{A}\cdot\vec{B}\over |\vec{A}|\cdot|\vec{B}|}$$ $$={217\over\sqrt{9+25+49}\cdot\sqrt{121+169+289}} = 0.9898774$$ Thus the angle between the two vectors is $\arccos0.9898774$.

A.Kaw矩阵代数初步学习笔记 2. Vectors的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 1. Introduction

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. 虾皮工作室QQ群列表

    各位博友: 本群不仅仅是提供好的资料,更重要是提供平台,提供解决问题的方法和思路.求人不如求己,掌握合理的方法和方式才是不断进步的根本.看我的文档,不单单是看内容,更应该从整理的方式和角度是深思,去想 ...

  2. unix环境高级编程基础知识之第二篇(3)

    看了unix环境高级编程第三章,把代码也都自己敲了一遍,另主要讲解了一些IO函数,read/write/fseek/fcntl:这里主要是c函数,比较容易,看多了就熟悉了.对fcntl函数讲解比较到位 ...

  3. 深入体验bash on windows,在windows上搭建原生的linux开发环境,酷!

    今年微软Build 2016大会最让开发人员兴奋的消息之一,就是在Windows上可以原生运行Linux bash,对开发人员来说,这是一个喜闻乐见的消息. 1 安装 你必须安装开发者预览版本,才能使 ...

  4. [BZOJ1143][CTSC2008]祭祀river(最长反链)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1143 分析: 最长反链==最小路径覆盖==n-二分图最大匹配数 某神犇对二分图的总结: ...

  5. FileShare枚举的使用(文件读写锁)

    开发过程中,我们往往需要大量与文件交互,但往往会出现很多令人措手不及的意外,所以对普通的C#文件操作做了一次总结,问题大部分如下: 1:写入一些内容到某个文件中,在另一个进程/线程/后续操作中要读取文 ...

  6. getContentResolver()内容解析者查询联系人、插入联系人

    首先,我们需要知道的两个Uri: 1.Uri uri = Uri.parse("content://com.android.contacts/raw_contacts");//查到 ...

  7. auto refresh iframe

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <t ...

  8. Swift微博项目--Swift中通过类名字符串创建类以及动态加载控制器的实现

    Swift中用类名字符串创建类(用到了命名空间) OC中可以直接通过类名的字符串转换成对应的类来操作,但是Swift中必须用到命名空间,也就是说Swift中通过字符串获取类的方式为NSClassFro ...

  9. 数据库开发基础-SQl Server 主键、外键、子查询(嵌套查询)

    主键 数据库主键是指表中一个列或列的组合,其值能唯一地标识表中的每一行.这样的一列或多列称为表的主键,通过它可强制表的实体完整性.当创建或更改表时可通过定义 PRIMARY KEY约束来创建主键.一个 ...

  10. bash中不可以用字符串做数组下标

    bash中可以用字符串做数组下标吗例如 test["abc"]=1------解决方案-------------------- 好像是误会,是awk里可以,bash shell里不 ...