A.Kaw矩阵代数初步学习笔记 2. Vectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第2章课程讲义下载(PDF)
Summary
- Vector
A vector is a collection of numbers in a definite order. If it is a collection of $n$ numbers, it is called a $n$-dimensional vector. For example, $$\vec{A} = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix},\ \vec{B} = \begin{bmatrix}4 & 5 & 6 \end{bmatrix}.$$ - Addition of vectors
Two vectors can be added only if they are of the same dimension and the addition is given by $$\vec{A} + \vec{B} = \begin{bmatrix}a_1\\ \vdots\\ a_n \end{bmatrix} + \begin{bmatrix}b_1\\ \vdots\\ b_n \end{bmatrix} = \begin{bmatrix}a_1+b_1\\ \vdots\\ a_n + b_n \end{bmatrix}$$ - Null vector
A null vector (i.e. zero vector) is where all the components of the vector are zero. For example, $$\begin{bmatrix}0\\ 0\\ 0\\ 0 \end{bmatrix}$$ - Unit vector
A unit vector $\vec{U}$ is defined as $$\vec{U} = \begin{bmatrix}u_1\\ \vdots\\ u_n \end{bmatrix}$$ where $$\sqrt{u_1^2 + \cdots + u_{n}^2 = 1}$$ - Scalar multiplication of vectors
If $k$ is a scalar and $\vec{A}$ is a $n$-dimensional vector, then $$k\vec{A} = k\begin{bmatrix}a_1\\ \vdots\\ a_n \end{bmatrix} = \begin{bmatrix}ka_1\\ \vdots\\ ka_n \end{bmatrix}$$ - Linear combination of vectors
Given $\vec{A}_1$, $\vec{A}_2$, $\cdots$, $\vec{A}_m$ as $m$ vectors of same dimension $n$, and if $k_1$, $k_2$, $\cdots$, $k_m$ are scalars, then $$k_1\vec{A}_1 + k_2\vec{A}_2 + \cdots + k_m\vec{A}_m$$ is a linear combination of the $m$ vectors. - Linearly independent vectors
A set of vectors $\vec{A}_1$, $\vec{A}_2$, $\cdots$, $\vec{A}_m$ are considered to be linearly independent if $$k_1\vec{A}_1 + k_2\vec{A}_2 + \cdots + k_m\vec{A}_m = \vec{0}$$ has only one solution of $k_1 = k_2 = \cdots = k_m =0$. - Rank
From a set of $n$-dimension vectors, the maximum number of linearly independent vectors in the set is called the rank of the set of vectors. Note that the rank of the vectors can never be greater than the vectors dimension. - Dot product
Let $\vec{A} = \begin{bmatrix}a_1, & \cdots, &a_n\end{bmatrix}$ and $\vec{B} = \begin{bmatrix}b_1, & \cdots, &b_n\end{bmatrix}$ be two $n$-dimensional vectors. Then the dot product (i.e. inner product) of the two vectors $\vec{A}$ and $\vec{B}$ is defined as $$\vec{A}\cdot\vec{B} = a_1b_1+\cdots+a_nb_n = \sum_{i=1}^{n}a_ib_i$$ - Some useful results
- If a set of vectors contains the null vector, the set of vectors is linearly dependent.
- If a set of $m$ vectors is linearly independent, then a subset of the $m$ vectors also has to be linearly independent.
- If a set of vectors is linearly dependent, then at least one vector can be written as a linear combination of others.
- If the dimension of a set of vectors is less than the number of vectors in the set, then the set of vectors is linearly dependent.
Selected Problems
1. For $$\vec{A} = \begin{bmatrix}2\\9\\-7 \end{bmatrix},\ \vec{B} = \begin{bmatrix}3\\2\\5 \end{bmatrix},\ \vec{C} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$$ find $\vec{A} + \vec{B}$ and $2\vec{A} - 3\vec{B} + \vec{C}$.
Solution:
$$\vec{A} + \vec{B} = \begin{bmatrix}2\\9\\-7 \end{bmatrix} + \begin{bmatrix}3\\2\\5 \end{bmatrix} = \begin{bmatrix}5\\ 11\\ -2 \end{bmatrix}$$ $$2\vec{A} - 3\vec{B} + \vec{C} = 2\begin{bmatrix}2\\9\\-7 \end{bmatrix} - 3\begin{bmatrix}3\\2\\5 \end{bmatrix} + \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} = \begin{bmatrix} -4\\ 13\\ -28 \end{bmatrix}$$
2. Are $$\vec{A} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix},\ \vec{B} = \begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix},\ \vec{C} = \begin{bmatrix} 1\\ 4\\ 25 \end{bmatrix}$$ linearly independent? What is the rank of the above set of vectors?
Solution:
Suppose $$x_1\vec{A} + x_2\vec{B} + x_3\vec{C} = 0$$ $$\Rightarrow x_1\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} + x_2\begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix} + x_3\begin{bmatrix} 1\\ 4\\ 25 \end{bmatrix} = 0$$ The coefficient matrix is $$\begin{bmatrix} 1& 1& 1\\ 1& 2& 4\\ 1& 5& 25 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 1& 1\\ 0& 1& 3\\ 0& 4& 24 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 1& 1\\ 0& 1& 3\\ 0& 1& 6 \end{bmatrix}\Rightarrow \begin{bmatrix} 1& 0& -5\\ 0& 0& -3\\ 0& 1& 6 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix} 1& 0& -5\\ 0& 0& 1\\ 0& 1& 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 0& 0\\ 0& 0& 1\\ 0& 1& 0 \end{bmatrix} \Rightarrow x_1=x_2=x_3=0$$ Thus they are linearly independent and the rank is 3.
3. Are $$\vec{A} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix},\ \vec{B} = \begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix},\ \vec{C} = \begin{bmatrix} 3\\ 5\\ 7 \end{bmatrix}$$ linearly independent? What is the rank of the above set of vectors?
Solution:
Suppose $$x_1\vec{A} + x_2\vec{B} + x_3\vec{C} = 0$$ $$\Rightarrow x_1\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} + x_2\begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix} + x_3\begin{bmatrix} 3\\ 5\\ 7 \end{bmatrix} = 0$$ The coefficient matrix is $$\begin{bmatrix} 1& 1& 3\\ 1& 2& 5\\ 1& 5& 7 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 1& 1\\ 0& 1& 2\\ 0& 4& 4 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 1& 1\\ 0& 1& 2\\ 0& 1& 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 0& 0\\ 0& 0& 1\\ 0& 1& 1 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix} 1& 0& 0\\ 0& 0& 1\\ 0& 1& 0 \end{bmatrix} \Rightarrow x_1=x_2=x_3=0$$ Thus they are linearly independent and the rank is 3.
4. Are $$\vec{A} = \begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix},\ \vec{B} = \begin{bmatrix} 2\\ 4\\ 10 \end{bmatrix},\ \vec{C} = \begin{bmatrix} 1.1\\ 2.2\\ 5.5 \end{bmatrix}$$ linearly independent? What is the rank of the above set of vectors?
Solution:
Suppose $$x_1\vec{A} + x_2\vec{B} + x_3\vec{C} = 0$$ $$\Rightarrow x_1\begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix} + x_2\begin{bmatrix} 2\\ 4\\ 10 \end{bmatrix} + x_3\begin{bmatrix} 1.1\\ 2.2\\ 5.5 \end{bmatrix} = 0$$ The coefficient matrix is $$\begin{bmatrix} 1& 2& 1.1\\ 2& 4& 2.2\\ 5& 10& 5.5 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 2& 1.1\\ 0& 0& 0\\ 0& 0& 0 \end{bmatrix} \Rightarrow x_1 = -2x_2-1.1x_3$$ which exists non-trivial solutions. Thus they are linearly dependent and the rank is 1.
5. Find the dot product of $\vec{A} = \begin{bmatrix}2& 1 & 2.5 &3 \end{bmatrix}$ and $\vec{B} = \begin{bmatrix}-3 & 2 & 1 & 2.5 \end{bmatrix}$.
Solution:
$$\vec{A}\cdot\vec{B} = 2\times(-3) + 1\times2 + 2.5\times1 + 3\times2.5 = 6$$
6. If $\vec{u}$, $\vec{v}$, $\vec{w}$ are three non-zero vector of 2-dimensions, then are they independent?
Solution:
Suppose the three 2-dimensional non-zero vectors are $\vec{u}=\begin{bmatrix}u_1\\ u_2\end{bmatrix}$, $\vec{v}=\begin{bmatrix}v_1\\ v_2\end{bmatrix}$, and $\vec{w}=\begin{bmatrix}w_1\\ w_2\end{bmatrix}$. We have $$x_1\vec{u} + x_2\vec{v} + x_3\vec{w} = 0$$ $$\Rightarrow \begin{cases} x_1u_1+x_2v_1+x_3w_1 = 0 \\ x_1u_2+ x_2v_2 + x_3 w_3 = 0\end{cases}$$ That is, the number of unknown is greater than the number of equations. Thus it has non-trivial solutions for $x_1$, $x_2$, $x_3$, which means they are linearly dependent.
In general cases, if the dimension of a set of vectors is less than the number of vectors in the set, then the set of vectors is linearly dependent.
7. $\vec{u}$ and $\vec{v}$ are two non-zero vectors of dimension $n$. Prove that if $\vec{u}$ and $\vec{v}$ are linearly dependent, there is a scalar $q$ such that $\vec{v} = q\vec{u}$.
Solution:
Suppose we have $$x_1\vec{u} + x_2\vec{v} = 0$$ Note that neither $x_1$ nor $x_2$ is zero, otherwise for instance, $x_1 = 0$ and $x_2\neq0$. Then we have $x_2\vec{v} = 0\Rightarrow x_2 = 0$ or $\vec{v} = 0$. Either of these is contradiction (both of the vectors are non-zero). Thus $x_1\neq0$ and $x_2\neq0$, and we have $$\vec{v} = -{x_1\over x_2}\vec{u}$$ that is, $\vec{v} = q\vec{u}$, where $q=-{x_1\over x_2}$.
8. $\vec{u}$ and $\vec{v}$ are two non-zero vectors of dimension $n$. Prove that if there is a scalar $q$ such that $\vec{v} = q\vec{u}$, then $\vec{u}$ and $\vec{v}$ are linearly dependent.
Solution:
Since $$\vec{v} = q\vec{u} \Rightarrow q\vec{u}-\vec{v} = 0$$ Note that $q\neq0$, otherwise $\vec{v}=0$ which is contradiction.
Thus $\vec{u}$ and $\vec{v}$ are linearly dependent.
9. What is the magnitude of the vector $\vec{V}=\begin{bmatrix}5 & -3 & 2 \end{bmatrix}$?
Solution:
$$|\vec{V}| = \sqrt{5^2+(-3)^2+2^2} = \sqrt{38}$$
10. What is the rank of the set of the vectors $$\begin{bmatrix}2\\3\\7 \end{bmatrix},\ \begin{bmatrix}6\\9\\21 \end{bmatrix},\ \begin{bmatrix}3\\2\\7 \end{bmatrix}.$$
Solution:
$$\begin{bmatrix}2& 6& 3\\ 3& 9& 2\\ 7& 21& 7 \end{bmatrix} \Rightarrow\begin{cases}2R_2-3R_1\\ {1\over7}R_3\end{cases}\begin{bmatrix}2& 6& 3\\ 0& 0& -5\\ 1& 3& 1 \end{bmatrix}$$ $$\Rightarrow\begin{cases}R_1-2R_3\\ -{1\over5}R_2\end{cases}\begin{bmatrix}0& 0& 1\\ 0& 0& 1\\ 1& 3& 1 \end{bmatrix} \Rightarrow\begin{cases}R_1-R_2\\ R_3-R_2 \end{cases}\begin{bmatrix}0& 0& 0\\ 0& 0& 1\\ 1& 3& 0 \end{bmatrix}$$ Thus the rank of this set of vectors is 2.
11. If $\vec{A} = \begin{bmatrix}5 & 2 & 3\end{bmatrix}$ and $\vec{B} = \begin{bmatrix}6 & -7 & 3\end{bmatrix}$, then what is $4\vec{A} + 5\vec{B}$?
Solution:
$$4\vec{A} + 5\vec{B} = 4\begin{bmatrix}5 & 2 & 3\end{bmatrix} + 5\begin{bmatrix}6 & -7 & 3\end{bmatrix}$$ $$=\begin{bmatrix}20+30 & 8-35 & 12+15\end{bmatrix} = \begin{bmatrix}50 & -27 & 27\end{bmatrix}$$
12. What is the dot product of two vectors $$\begin{cases}\vec{A} = 3i+5j+7k\\ \vec{B}=11i+13j+17k\end{cases}$$
Solution:
$$\vec{A}\cdot\vec{B} = 3\times11+5\times13+7\times17 = 217$$
13. What is the angle between two vectors $$\begin{cases}\vec{A} = 3i+5j+7k\\ \vec{B}=11i+13j+17k\end{cases}$$
Solution:
$$\cos < \vec{A}, \vec{B} > = {\vec{A}\cdot\vec{B}\over |\vec{A}|\cdot|\vec{B}|}$$ $$={217\over\sqrt{9+25+49}\cdot\sqrt{121+169+289}} = 0.9898774$$ Thus the angle between the two vectors is $\arccos0.9898774$.
A.Kaw矩阵代数初步学习笔记 2. Vectors的更多相关文章
- A.Kaw矩阵代数初步学习笔记 5. System of Equations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 7. LU Decomposition
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 1. Introduction
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
随机推荐
- 不得不玩玩NHibernate
1.0=>前言 放着好好的EF不用,为什么要来玩NHibernate了?那是因为现在的工作内容就是维护一个比较老的项目,第一版是公司找外包做的,跟数据库打交道这块用的NHibernate,虽然都 ...
- GitHub中国区前100名到底是什么样的人?
本文根据Github公开API,抓取了地址显示China的用户,根据粉丝关注做了一个排名,分析前一百名的用户属性,剖析这些活跃在技术社区的牛人到底是何许人也!后续会根据我的一些经验出品<技术人员 ...
- Validform表单验证总结
近期项目里用到了表单的验证,选择了Validform_v5.3.2. 先来了解一下一些基本的参数: 通用表单验证方法:Demo: $(".demoform").Validform( ...
- PHP 页面跳转方法
1.php header()函数跳转 PHP的header()函数非常强大,其中在页面url跳转方面也调用简单,使用header()直接跳转到指定url页面,这时页面跳转是302重定向: $url = ...
- 外网不能访问部署在虚机的NodeJs网站(80端口)
外网能访问部署在虚机的NodeJs网站需注意如下: 在管理门户上配置端点(Http 80->80) 在虚机中的防火墙入站规则中增加应用程序Node.exe的允许规则 启动NodeJs的侦听进程时 ...
- 将IList转换为List
简单点说,IList<T>直接转换为List<T>可以不用考虑.IList<T>可以用至少2种方式简单的复制成List<T>:1.IList<T ...
- Http协议中的Content-Length属性
Android开发的时候需要与从服务器上获取数据,数据是通过http协议封装的.Android端使用的是Xutils第三方插件来发起http请求,但是每次只能拿到部分数据.通过仔细分析后原来是Cont ...
- C语言变参数函数
#include<iostream> #include<stdarg.h> using namespace std; int sum(int cnt, ...){ va_lis ...
- Go--避免SQL注入
避免SQL注入 什么是SQL注入 SQL注入攻击(SQL Injection),简称注入攻击,是Web开发中最常见的一种安全漏洞.可以用它来从数据库获取敏感信息,或者利用数据库的特性执行添加用户,导出 ...
- C#中的数组,多维数组和交错数组
想研究一些面向对象的东西,也许是代码写得还不够多.感觉还不好,看那些教程,不是嫌太水就是太难看不懂.心情很是落寞 不过再怎样也要坚持每天发一篇博客. 这篇来说一下C#中的数组,多维数组,交错数组的一些 ...