什么是并查集?
并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。

并查集的主要操作
1.合并两个不相交集合
2.判断两个元素是否属于同一集合

主要操作的解释及代码
一开始我们假设元素都是分别属于一个独立的集合里的。
(1).合并两个不相交集合 操作很简单:先设置一个数组Father[x],表示x的“父亲”的编号。 那么,合并两个不相交集合的方法就是,找到其中一个集合最父亲的父亲(也就是最久远的祖先),将另外一个集合的最久远的祖先的父亲指向它。

上图为两个不相交集合,b图为合并后id(b)=id(g)

   1:  void init(){
   2:      int i;
   3:      for(i=0;i<maxn;i++)
   4:          id[i]=-1;
   5:  }
   6:  void Union(int x,int y){
   7:      int rx=find_root(x);
   8:      int ry=find_root(y);
   9:      if(rx==ry)
  10:          return;
  11:      id[ry]=rx;
  12:  }

.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }

(2).判断两个元素是否属于同一集合仍然使用上面的数组,则本操作即可转换为寻找两个元素的最久远祖先是否相同。可以采用递归实现。

   1:  bool judge(int x, int y)
   2:  {
   3:      return find_root(x) == find_root(y);
   4:  }

并查集的优化
(1).路径压缩
刚才我们说过,寻找祖先时采用递归,但是一旦元素一多起来,或退化成一条链,每次GetFather都将会使用O(n)的复杂度,这显然不是我们想要的。
对此,我们必须要进行路径压缩,即我们找到最久远的祖先时“顺便”把它的子孙直接连接到它上面,这就是路径压缩了。

   1:  int find_root(int x){
   2:      if(id[x]==-1)
   3:          return x;    
   4:      else
   5:          id[x]=find_root(id[x]);
   6:      return id[x];
   7:  }

.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }

.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }

.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }

(2).rank合并
1.按照树的高度合并。

   1:  int rank[N]={0};// 节点高度的上界 
   2:   
   3:  void Union(int x, int y)
   4:  {
   5:      int rx=find_root(x);
   6:      int ry=find_root(y);
   7:      if (rank[rx] > rank[ry])
   8:          id[ry] = rx;
   9:     else {
  10:          id[rx] = ry;
  11:          if (rank[rx] == rank[ry])
  12:              rank[ry]++;
  13:      }
  14:  }

2.按照集合的大小合并

   1:  int rank[N];// 集合的大小
   2:   
   3:  void init(){
   4:  for(int i=0;i<N;i++){
   5:      id[i]=-1;
   6:      rank[i]=1;
   7:  }
   8:  void Union(int x, int y)
   9:  {
  10:      int rx=find_root(x);
  11:      int ry=find_root(y);
  12:      if (rank[rx] > rank[ry]){
  13:          rank[rx]+=rank[ry];
  14:          id[ry] = rx;
  15:      }
  16:     else {
  17:          rank[ry]+=rank[rx];
  18:          id[rx] = ry;
  19:      }
  20:  }

.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }

.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }

并查集系列题目[HDU]:http://acm.hdu.edu.cn/problemclass.php?id=721

数据结构与算法分析 – Disjoint Set(并查集)的更多相关文章

  1. 【数据结构】【计算机视觉】并查集(disjoint set)结构介绍

    1.简述 在实现多图像无序输入的拼接中,我们先使用surf算法对任意两幅图像进行特征点匹配,每对图像的匹配都有一个置信度confidence参数,来衡量两幅图匹配的可信度,当confidence> ...

  2. 数据结构 之 并查集(Disjoint Set)

    一.并查集的概念:     首先,为了引出并查集,先介绍几个概念:     1.等价关系(Equivalent Relation)     自反性.对称性.传递性.     如果a和b存在等价关系,记 ...

  3. 《数据结构与算法分析:C语言描述》复习——第八章“并查集”——并查集

    2014.06.18 14:16 简介: “并查集”,英文名为“union-find set”,从名字就能看出来它支持合并与查找功能.另外还有一个名字叫“disjoint set”,中文名叫不相交集合 ...

  4. 【算法与数据结构】并查集 Disjoint Set

    并查集(Disjoint Set)用来判断已有的数据是否构成环. 在构造图的最小生成树(Minimum Spanning Tree)时,如果采用 Kruskal 算法,每次添加最短路径前,需要先用并查 ...

  5. 数据结构《14》----并查集 Union-Find

    描述: 并查集是一种描述解决等价关系.能够方便地描述不相交的多个集合. 支持如下操作    1. 建立包含元素 x 的集合  MakeSet(x) 2. 查找给定元素所在的集合 Find(x), 返回 ...

  6. 并查集(Disjoint Set)

    在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中.这一类问题其特点是看似并不复杂, ...

  7. 数据结构之并查集Union-Find Sets

    1.  概述 并查集(Disjoint set或者Union-find set)是一种树型的数据结构,常用于处理一些不相交集合(Disjoint Sets)的合并及查询问题. 2.  基本操作 并查集 ...

  8. 数据结构09—— 并查集(Union-Find)

    一.关于并查集 并查集(Union-Find)是一种树型的数据结构,常用于处理一些不相交集合(Disjoint Sets)的合并及查询问题.并查集(Union-Find)从名字可以看出,主要它涉及两种 ...

  9. ACM数据结构-并查集

    ACM数据结构-并查集   并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合 ...

随机推荐

  1. 网页上传图片 判断类型 检测大小 剪切图片 ASP.NET版本

    本文转载自:http://www.youarebug.com/forum.php?mod=viewthread&tid=56&extra=page%3D1 我们在网页上传图片的时候,特 ...

  2. checkbox js onclick ajax,列表页表格中修改数据

    <input type='checkBox' value='".$row["p_id"]."' onclick='changeisNew(this);'& ...

  3. .Net简单图片系统-简介

    系统简介 最近做了一个简单图片系统,这个系统就是 将上传的的图片保存到系统本地文件系统或者基于fastdfs的分布式文件系统中,在查看图片时会直接请求此系统或者fastdfs的tracker服务器(需 ...

  4. BGP路由协议详解(完整篇)

    原文链接:http://xuanbo.blog.51cto.com/499334/465596/ 2010-12-27 12:02:45 上个月我写一篇关于BGP协议的博文,曾许诺过要完善这个文档,但 ...

  5. js 漩涡

    What's the ball's orbit if they head for it's next ball. <html> <canvas id="ca"&g ...

  6. C++成员变量的初始化顺序问题

    问题来源: 由于面试题中,考官出了一道简单的程序输出结果值的题:如下, class A { private: int n1; int n2; public: A():n2(0),n1(n2+2){} ...

  7. HTML5+AJAX原生分块上传文件的关键参数设置

    processData:false 这是jquery.ajax的一个参数.默认值为true,表示会将非字符串对象自动变成k1=v1&k2=v2的形式,例如一个数组参数{d:[1,2]},到服务 ...

  8. (转)ElasticSearch学习

    ElasticSearch是一个基于Lucene构建的开源,分布式,RESTful搜索引擎.设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便.支持通过HTTP使用JSON进行数据索引 ...

  9. Android 横屏不让输入法全屏显示

    记录学习之用 查找资料参考记录的 在源码里进行修改.  frameworks/base/core/Java/Android/inputmethodservice/InputMethodService. ...

  10. SQL复习

    1.select SELECT LastName,FirstName FROM Persons SELECT * FROM Persons 2.distinct SELECT DISTINCT Com ...