求有限集传递闭包的 Floyd Warshall 算法(矩阵实现)

其实就三重循环。
zzuoj 1199 题 链接 http://acm.zzu.edu.cn:8000/problem.php?id=1199

Problem B: 大小关系

Time Limit: 2 Sec  Memory Limit: 128 MB
Submit: 148  Solved: 31
[Submit][Status][Web Board]

Description

当我们知道一组大小关系之后,可判断所有关系是否都能成立,即关系间没有矛盾。
 
例如:A<B, A<C, B<C  通过这组关系我们可以得到A<B<C ,所有关系都成立,没有矛盾。
 
若 A<B, B<C, C<A  通过前两个关系我们得到 A<B<C ,这个关系与C<A矛盾,所有关系不能同时成立。
 
现在我们知道m个关系,请判断这m个关系是否能成立,成立输出“YES”,否则输出“NO”。

Input

多组数据,每组数据如下:

第一行有一个数字m。 m代表m组关系(1<=m<=400),接下来m行每行有一个关系,用两个不同的字母和一个符号表示。(输入保证字母在‘A’-‘Z’之间,关系符号只有 > , <)

Output

对于每组数据输出“YES”或“NO”.

Sample Input

3

A<B
A<C
B<C
3
A<B
B<C
C<A

Sample Output

YES

NO

/*********************************************************题解**************************************************************/

大于和小于 其实是一种关系,即两个元素之间的关系,b>a 可以用 a < b 来描述。

题目中所给的就是26
个字母之间的关系,我们可以用0 到25 的整数对应 A 到 Z ,用二维数组来表达元素之间的关系,如 re[0][25]==1 就表示 0 
< 25 ,即 A < Z。剩下的就只剩下推理的过程了。

学过  离散数学(上海科学技术文献出本社)的人都知道在  集合论 中 关系的性质中 有一种性质 叫做 传递性 而 < 这种关系就正好具有这种性质,当然小于 并不满足 自反性 和 对称性 这是我们推出矛盾的关键。

关系的的闭包运算 中 有一种闭包运算叫做 求关系 R 的 传递闭包 R+  ,这个 R+ 就是传递的,也就是说 如果在 R+ 中找到 a < b 和 b <  c 就一定能找到 a < c ,也就是说 R+ 就是推理过后所得到的关系。

求R+ 的算法:

for(i=0; i<26;++i){
          for( j=0;j<26;++j){
              if(re[ j ][ i ]){
                  for( k=0;k<26;++k){
                      re[ j ][ k ] +=re[ i ][ k] ;
                  }
              }
          }
        }

就这么多,感谢Warshall

顺便提一句,这个Floyd Warshall 和图论里面的那个经典的Floyd 算法的提出者是一个人,其实这道题也完全可以用图论的方式来做

/***************************************/

AC代码:

# include <iostream>
# include <string.h>
# include <stdlib.h>
# include <math.h>
# include <stdio.h>
# include <algorithm>
# include <stack>

int m,re[ 27 ][ 27 ];
char a,b,c,in[ 4 ];

int main(){
    using namespace std;
    int i,j,k;
    while(~scanf("%d",&m)){
       
        memset(re,0,sizeof(re));
       
        for( i=0; i<m; ++i){
            scanf("%s",in);
            a=in[ 0 ];
            c=in[ 1 ];
            b=in[ 2 ];
           
            if(c=='<'){
                re[ a-'A' ][ b-'A' ]=1;
            }else if(c=='>'){
                re[ b-'A' ][ a-'A' ]=1;
            }
        }
       
       
       
        for(i=0; i<26;++i){
          for( j=0;j<26;++j){
              if(re[ j ][ i ]){
                  for( k=0;k<26;++k){
                      re[ j ][ k ]+=re[ i ][ k ];
                  }
              }
          }
        }
       
        for(i=0;i<26;++i){
            for(j=0;j<26;++j)
            if(re[ i ][ j ]&&re[ j ][ i ]){
                cout << "NO\n";
                goto kkk;
            }
        }
       
        cout << "YES\n";
        kkk:;
    }   
   
    return 0;
}

1199 Problem B: 大小关系的更多相关文章

  1. [置顶] 如何判断两个IP大小关系及是否在同一个网段中

    功能点  判断某个IP地址是否合法 判断两个IP地址是否在同一个网段中 判断两个IP地址的大小关系 知识准备 IP协议 子网掩码 Java 正则表达式 基本原理 IP地址范围 0.0.0.0- 255 ...

  2. day03变量的命名规范,常量,输出:自带换行,输入,注释,数据类型,运算符,常用字符大小关系

    复习 ''' 1.语言的分类 -- 机器语言:直接编写0,1指令,直接能被硬件执行 -- 汇编语言:编写助记符(与指令的对应关系),找到对应的指令直接交给硬件执行 -- 高级语言:编写人能识别的字符, ...

  3. storm中几个概念的大小关系

    从图可以看出来:topology>supervisor>worker>excutor>task; 也就是说一个topology可以运行在多个supervisor上,一个supe ...

  4. ZZUOJ 1199 大小关系(拓扑排序,两种方法_判断入度和dfs回路判断)

    /* 这道题如果按照度为0的节点来判断的时候,将度为0的节点和其相连的节点(度数并减去1) 从图中去掉,如果度为0的节点的个数为0个但是图中的节点没有都去掉的 时候那么说明 出现了回路!用这种方法必须 ...

  5. 死磕内存篇 --- JAVA进程和linux内存间的大小关系

    运行个JAVA 用sleep去hold住 package org.hjb.test; public class TestOnly { public static void main(String[] ...

  6. 关于CPU位数,OS位数以及内存大小关系的一点总结

    (这个学期做助教,说来好惭愧啊,虽然我也是考研进来的,但是就在两年前复习的资料居然全部都忘光了.对大二的孩子们提问的问题多半都解决不了!!!越来越觉得自己的学习方法有问题了,总是想着一些知识能够根据自 ...

  7. IAR map 文件报告与Flash 大小关系

  8. shell 大小关系 -eq -ne

    -eq:等于-ne:不等于-le:小于等于-ge:大于等于-lt:小于-gt:大于

  9. 父进程pid和子进程pid的大小关系

    如果进程ID最大值没有达到系统进程数的上限,子进程比父进程ID大.但是如果进程ID达到上限,系统会分配之前分配但是已经退出的进程ID给新进程,这样有可能出现子进程ID比父进程小.

随机推荐

  1. C# 文章导航

    1. C#相关文章 1.1 C# 基础(一) 访问修饰符.ref与out.标志枚举等等 1.2 C# 基础(二) 类与接口 1.3 C# DateTime日期格式化 1.4 C# DateTime与时 ...

  2. NYOJ 1007

    在博客NYOJ 998 中已经写过计算欧拉函数的三种方法,这里不再赘述. 本题也是对欧拉函数的应用的考查,不过考查了另外一个数论基本定理:如何用欧拉函数求小于n且与n互质所有的正整数的和. 记eule ...

  3. Android -- 真正的 高仿微信 打开网页的进度条效果

    (本博客为原创,http://www.cnblogs.com/linguanh/) 目录: 一,为什么说是真正的高仿? 二,为什么要搞缓慢效果? 三,我的实现思路 四,代码,内含注释 五,使用方法与截 ...

  4. Django

    一.Django 简介 Django 是一个由 Python 写成的开放源代码的 Web 应用框架.它最初是被开发来用于管理劳伦斯出版集团旗下的一些以新闻内容为主的网站的,即是 CMS(内容管理系统) ...

  5. CommandPattern

    /** * 命令模式 * @author TMAC-J * 将调用者和接受者分离 * 可以将一组命令组合在一起,适合很多命令的时候 */ public class CommandPattern { i ...

  6. Android之SQLite数据存储

    一.SQLite保存数据介绍 将数据库保存在数据库对于重复或者结构化数据(比如契约信息)而言是理想之选.SQL数据库的主要原则之一是架构:数据库如何组织正式声明.架构体现于用于创建数据库的SQL语句. ...

  7. npm源切换

    版权声明:欢迎转载,请附加转载来源:一路博客(http://www.16boke.com)   目录(?)[+] 安装 使用 列出可选的源 切换 增加源 删除源 测试速度 许可 项目主页   我们介绍 ...

  8. 敏捷测试模式之Scrum及其实践

    一.    敏捷开发模式简介 敏捷是近年来软件研发领域很火的一个词,采用敏捷开发模式的研发团队是越来越多了,尤其是敏捷模式中的Scrum更是佼佼者大行其道,这表明敏捷模式确有其好处,能给企业带来效率的 ...

  9. 如何dos命令打开服务窗口?

    1.输入services.msc点击<确定>进入服务窗口.如图:

  10. Linux命令

    系统信息 arch 显示机器的处理器架构(1) uname -m 显示机器的处理器架构(2) uname -r 显示正在使用的内核版本 dmidecode -q 显示硬件系统部件 - (SMBIOS ...