自然语言19_Lemmatisation
QQ:231469242
欢迎喜欢nltk朋友交流
https://en.wikipedia.org/wiki/Lemmatisation
Lemmatisation (or lemmatization) in linguistics is the process of grouping together the inflected forms of a word so they can be analysed as a single item, identified by the word's lemma, or dictionary form.[1]
In computational linguistics, lemmatisation is the algorithmic process of determining the lemma of a word based on its intended meaning. Unlike stemming, lemmatisation depends on correctly identifying the intended part of speech and meaning of a word in a sentence, as well as within the larger context surrounding that sentence, such as neighboring sentences or even an entire document. As a result, developing efficient lemmatisation algorithms is an open area of research.[2][3]
Contents
Description
In many languages, words appear in several inflected forms. For example, in English, the verb 'to walk' may appear as 'walk', 'walked', 'walks', 'walking'. The base form, 'walk', that one might look up in a dictionary, is called the lemma for the word. The association of the base form with a part of speech is often called a lexeme of the word.
Lemmatisation is closely related to stemming. The difference is that a stemmer operates on a single word without knowledge of the context, and therefore cannot discriminate between words which have different meanings depending on part of speech. However, stemmers are typically easier to implement and run faster. The reduced "accuracy" may not matter for some applications. In fact, when used within information retrieval systems, stemming improves query recall accuracy, or true positive rate, when compared to lemmatisation. Nonetheless, stemming reduces precision, or true negative rate, for such systems.[4]
For instance:
- The word "better" has "good" as its lemma. This link is missed by stemming, as it requires a dictionary look-up.
- The word "walk" is the base form for word "walking", and hence this is matched in both stemming and lemmatisation.
- The word "meeting" can be either the base form of a noun or a form of a verb ("to meet") depending on the context; e.g., "in our last meeting" or "We are meeting again tomorrow". Unlike stemming, lemmatisation attempts to select the correct lemma depending on the context.
Document indexing software like Lucene[5] can store the base stemmed format of the word without the knowledge of meaning, but only considering word formation grammar rules. The stemmed word itself might not be a valid word: 'lazy', as seen in the example below, is stemmed by many stemmers to 'lazi'. This is because the purpose of stemming is not to produce the appropriate lemma – that is a more challenging task that requires knowledge of context. The main purpose of stemming is to map different forms of a word to a single form.[6] As a rules-based algorithm, dependent only upon the spelling of a word, it sacrifices accuracy to ensure that, for example, when 'laziness' is stemmed to 'lazi', it has the same stem as 'lazy'.
Use in biomedicine
Morphological analysis of published biomedical literature can yield useful results. Morphological processing of biomedical text can be more effective by a specialised lemmatisation program for biomedicine, and may improve the accuracy of practical information extraction tasks.[7]
自然语言19_Lemmatisation的更多相关文章
- 【HanLP】HanLP中文自然语言处理工具实例演练
HanLP中文自然语言处理工具实例演练 作者:白宁超 2016年11月25日13:45:13 摘要:HanLP是hankcs个人完成一系列模型与算法组成的Java工具包,目标是普及自然语言处理在生产环 ...
- Python自然语言处理工具小结
Python自然语言处理工具小结 作者:白宁超 2016年11月21日21:45:26 目录 [Python NLP]干货!详述Python NLTK下如何使用stanford NLP工具包(1) [ ...
- 【NLP】基于自然语言处理角度谈谈CRF(二)
基于自然语言处理角度谈谈CRF 作者:白宁超 2016年8月2日21:25:35 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务 ...
- Atitit 自然语言处理原理与实现 attilax总结
Atitit 自然语言处理原理与实现 attilax总结 1.1. 中文分词原理与实现 111 1.2. 英文分析 1941 1.3. 第6章 信息提取 2711 1.4. 第7章 自动摘要 3041 ...
- Atitit.自然语言处理--摘要算法---圣经章节旧约39卷概览bible overview v2 qa1.docx
Atitit.自然语言处理--摘要算法---圣经章节旧约39卷概览bible overview v2 qa1.docx 1. 摘要算法的大概流程2 2. 旧约圣经 (39卷)2 2.1. 与古兰经的对 ...
- tn文本分析语言(四) 实现自然语言计算器
tn是desert和tan共同开发的一种用于匹配,转写和抽取文本的语言.解释器使用Python实现,代码不超过1000行. github地址:https://github.com/ferventdes ...
- 自然语言26_perplexity信息
http://www.ithao123.cn/content-296918.html 首页 > 技术 > 编程 > Python > Python 文本挖掘:简单的自然语言统计 ...
- 43、哈工大NLP自然语言处理,LTP4j的测试+还是测试
1.首先需要构建自然语言处理的LTP的框架 (1)需要下载LTP的源码包即c++程序(https://github.com/HIT-SCIR/ltp)下载完解压缩之后的文件为ltp-master (2 ...
- Atitit attilax在自然语言处理领域的成果
Atitit attilax在自然语言处理领域的成果 1.1. 完整的自然语言架构方案(词汇,语法,文字的选型与搭配)1 1.2. 中文分词1 1.3. 全文检索1 1.4. 中文 阿拉伯文 英文的简 ...
随机推荐
- Java网络编程——IP
类:InetAdrress 该类主要用于表示互联网协议(IP对象)地址,且无构造方法 主要方法: public static InetAddress getLocalHost()-->返回本地主 ...
- oracle数据泵实现不同用户之间的导出导入
来源于:http://www.cnblogs.com/kevinsun/archive/2007/02/03/638803.aspx http://blog.sina.com.cn/s/blog_68 ...
- [Bundling and Minification ] 一、如何绑定
绑定和压缩(缩小)是ASP.NET 4.5出现的用来提高程序性能的两个重要的技术.绑定(Bundling)是将多个文件合并为一个文件,压缩(Minification)主要是将文件缩小,如Js .CSS ...
- Jsoup获取部分页面数据失败 org.jsoup.UnsupportedMimeTypeException: Unhandled content type. Must be text/*, application/xml, or application/xhtml+xml.
用Jsoup在获取一些网站的数据时,起初获取很顺利,但是在访问某浪的数据是Jsoup报错,应该是请求头里面的请求类型(ContextType)不符合要求. 请求代码如下: private static ...
- Java 接口中常量的思考
接口中不允许方法的实现,而抽象类是允许方法实现的及定义变量的,因此我们可以看出接口是比抽象类更高层次的抽象.如果接口可以定义变量,但是接口中的方法又都是抽象的,在接口中无法通过行为(例如set()方法 ...
- find常见用法
Linux中find常见用法示例 ·find path -option [ -print ] [ -exec -ok command ] {} \; find命令的参数 ...
- 网页中常用HTML字符实体
摘要: 一些字符在 HTML 中拥有特殊的含义,比如小于号 () 用于定义 HTML 标签的开始.如果我们希望浏览器正确地显示这些字符,我们必须在 HTML 源码中插入字符实体. 字符实体有三部分:一 ...
- iOS不得姐项目--pop框架的初次使用
一.pop和Core Animation的区别 1.Core Animation的动画只能添加到layer上 2.pop的动画能添加到任何对象 3.pop的底层并非基于Core Animation,是 ...
- HTML 5 video 标签跨浏览器兼容
<video width="320" height="240" controls> <source src="movie.mp4 ...
- 【BZOJ-3572】世界树 虚树 + 树形DP
3572: [Hnoi2014]世界树 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1084 Solved: 611[Submit][Status ...