题意:给出一个矩阵棋盘,大小不超过10^5。上面有n个非法点(n<=2000)不可以踩,从左上角开始走到右下角,每次只能向下或者向右移动。问有多少种走法。结果对10^9+7取模。

分析:

组合数学DP

设dp[i]表示从左上角开始不经过非法点走到第i个非法点有多少种方法。

dp[i]=num(s, point[i]) - sigma( dp[j] * num(point[j], point[i]) );

其中,sigma表示加和,s是起始点,j遍历所有在点i左上方的点。num(a,b)表示从a到b有多少种走法(不用避开非法点)。

num可以直接用组合数表示,即c(x+y-2, x -1)。

这道题涉及到了较大的组合数取模问题。求大组合数方法如下:

可以先处理出所有1~n的阶乘,存入数组。factorial[i]表示i的阶乘取模后的结果。

并求出所有的阶乘在该模运算下的逆元,存入数组。inverse[i]表示factorial[i]的逆元。

c(n,m)原本等于( n! / (n-m)! ) / m!,现在用这两个数组可以表示为factorial[n] * inverse[n-m] * inverse[m]。

模板如下:

#define LL long long

const int MAX_M = (int)(2e5) + ;
const int MOD = (int)(1e9) + ; LL multi_mod(LL a, LL b, LL c)
{ //返回(a*b) mod c,a,b,c<2^63
a %= c;
b %= c;
LL ret = ;
while (b)
{
if (b & )
ret = (ret + a) % c;
a <<= ;
a %= c;
b >>= ;
}
return ret;
} LL pow_mod(LL x, LL n, LL mod)
{ //返回x^n mod c ,非递归版
x %= mod;
if (n == )
return x;
LL ret = ;
while (n)
{
if (n & )
ret = multi_mod(ret, x, mod);
n >>= ;
x = multi_mod(x, x, mod);
}
return ret;
} long long get_inverse(long long a)
{
return pow_mod(a, MOD - , MOD);
} long long factorial[MAX_M];
long long inverse[MAX_M]; void init_comb(int n)
{
factorial[] = ;
for (int i = ; i <= n; i++)
{
factorial[i] = factorial[i - ] * i;
factorial[i] %= MOD;
}
inverse[n] = get_inverse(factorial[n]);
for (int i = n - ; i >= ; i--)
{
inverse[i] = inverse[i + ] * (i + );
inverse[i] %= MOD;
}
} long long comb(long long a, long long b)
{
long long ret = factorial[a] * inverse[a - b];
ret %= MOD;
ret *= inverse[b];
ret %= MOD;
return ret;
}

求逆元可以使用扩展欧几里德算法,但是比较麻烦。这次我使用了一个更为简单的算法,费马小定理。

即:当p是质数且a和p互质,那么a^(p-1)=1 (mod p)

而逆元的定义是x * y=1 (mod p)则y是x的逆元。令x=a,且a与p互质,则由a^(p-1)=1 (mod p)可得:y=a^(p-2)。

对于求a的逆元这个问题,a<p且p是质数,自然可以利用上面的结论,a的逆元就是a^(p-2)。

求逆元模板如下:

LL multi_mod(LL a, LL b, LL c)
{ //返回(a*b) mod c,a,b,c<2^63
a %= c;
b %= c;
LL ret = ;
while (b)
{
if (b & )
ret = (ret + a) % c;
a <<= ;
a %= c;
b >>= ;
}
return ret;
} LL pow_mod(LL x, LL n, LL mod)
{ //返回x^n mod c ,非递归版
x %= mod;
if (n == )
return x;
LL ret = ;
while (n)
{
if (n & )
ret = multi_mod(ret, x, mod);
n >>= ;
x = multi_mod(x, x, mod);
}
return ret;
} long long get_inverse(long long a)
{
return pow_mod(a, MOD - , MOD);
}

本题代码如下:

#include <cstdio>
#include <algorithm>
using namespace std; #define d(x)
#define LL long long const int MAX_N = ;
const int MAX_M = (int)(2e5) + ;
const int MOD = (int)(1e9) + ; int row_num, col_num;
int n;
pair<int, int> point[MAX_N];
long long dp[MAX_N]; void input()
{
scanf("%d%d%d", &row_num, &col_num, &n);
for (int i = ; i < n; i++)
{
int a, b;
scanf("%d%d", &a, &b);
point[i] = make_pair(a, b);
}
point[n++] = make_pair(row_num, col_num);
point[n++] = make_pair(, );
for (int i = ; i < n; i++)
{
point[i].first--;
point[i].second--;
}
} LL multi_mod(LL a, LL b, LL c)
{ //返回(a*b) mod c,a,b,c<2^63
a %= c;
b %= c;
LL ret = ;
while (b)
{
if (b & )
ret = (ret + a) % c;
a <<= ;
a %= c;
b >>= ;
}
return ret;
} LL pow_mod(LL x, LL n, LL mod)
{ //返回x^n mod c ,非递归版
x %= mod;
if (n == )
return x;
LL ret = ;
while (n)
{
if (n & )
ret = multi_mod(ret, x, mod);
n >>= ;
x = multi_mod(x, x, mod);
}
return ret;
} long long get_inverse(long long a)
{
return pow_mod(a, MOD - , MOD);
} long long factorial[MAX_M];
long long inverse[MAX_M]; void init_comb(int n)
{
factorial[] = ;
for (int i = ; i <= n; i++)
{
factorial[i] = factorial[i - ] * i;
factorial[i] %= MOD;
}
inverse[n] = get_inverse(factorial[n]);
for (int i = n - ; i >= ; i--)
{
inverse[i] = inverse[i + ] * (i + );
inverse[i] %= MOD;
}
} long long comb(long long a, long long b)
{
long long ret = factorial[a] * inverse[a - b];
ret %= MOD;
ret *= inverse[b];
ret %= MOD;
return ret;
} int main()
{
init_comb();
input();
sort(point, point + n);
dp[] = ;
for (int i = ; i < n; i++)
{
dp[i] = comb(point[i].first + point[i].second, point[i].second);
for (int j = ; j < i; j++)
{
if (point[j].first <= point[i].first && point[j].second <= point[i].second)
{
long long a = point[i].first - point[j].first;
a += point[i].second - point[j].second; long long b = point[i].second - point[j].second; dp[i] -= (dp[j] * comb(a, b)) % MOD;
dp[i] += MOD;
dp[i] %= MOD;
}
}
d(printf("dp[%d] = %d\n", i, (int)dp[i]));
}
printf("%d\n", (int)dp[n - ]);
return ;
}

ccf559c的更多相关文章

随机推荐

  1. C++基础入门

    #include "iostream" using namespace std; class A{ public:      A(int x1){       x = x1;  } ...

  2. [Angularjs]asp.net mvc+angularjs+web api单页应用之CRUD操作

    写在前面 前篇文章整理了angularjs学习目录,有园子里的朋友问我要这方面的demo,周末也没什么事,就在之前的单页应用的demo上面添加了增删改查的操作.代码比较简单,这里只列举比较重要的代码片 ...

  3. 【转】如何确定Kafka的分区数、key和consumer线程数

    文章来源:http://www.cnblogs.com/huxi2b/p/4583249.html -------------------------------------------------- ...

  4. LINUX命令总结 -------来自 水滴娃娃 的CSDN

    LINUX命令总结 标签: LINUX命令总结 2014-01-27 15:54 41039人阅读 评论(1) 收藏 举报  分类: linux(1)  版权声明:本文为博主原创文章,未经博主允许不得 ...

  5. JavaScript基础整理(1)

    最近读了<JavaScript权威指南>这本书,闲来无事对自认为重要的知识做了些整理,方便以后查阅. JavaScript中的最重要的类型就是对象,对象是名/值对的集合,或字符串到值映射的 ...

  6. DigitalOcean 建站笔记

    由于在默认的情况下digitalocean的VPS没有设置swap分区,用df -h命令查看的话,整个VPS上只有一个20G的分区.用free命令查看的话,swap分区的大小是0,增加swap分区的命 ...

  7. WebService 之 WSDL文件 讲解

    原文地址:http://blog.csdn.net/tropica/archive/2008/11/02/3203892.aspx 恩,我想说的是,是不是经常有人在开发的时候,特别是和第三方有接口的时 ...

  8. 大熊君大话NodeJS之------Buffer模块

    一,开篇分析 所谓缓冲区Buffer,就是 "临时存贮区" 的意思,是暂时存放输入输出数据的一段内存. JS语言自身只有字符串数据类型,没有二进制数据类型,因此NodeJS提供了一 ...

  9. Js设置及获取Cookie的方法

    Login页面设置Cookie: <script type="text/javascript"> if(json.result=="true") { ...

  10. 清北暑假模拟day2 将

    /* 爆搜,正解弃坑 */ #include<iostream> #include<cstdio> #include<string> #include<cst ...