2016-05-31  21:45:41

题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2333

(学习了黄学长的代码

有如下操作:

U x y: 加一条边,连接第x个节点和第y个节点

A1 x v: 将第x个节点的权值增加v

A2 x v: 将第x个节点所在的连通块的所有节点的权值都增加v

A3 v: 将所有节点的权值都增加v

F1 x: 输出第x个节点当前的权值

F2 x: 输出第x个节点所在的连通块中,权值最大的节点的权值

F3: 输出所有节点中,权值最大的节点的权值

~~~~~~~~~~~~~~萌萌哒分割线~~~~~~~~~~~~~~~~~~~~~~~~

U就是一个合并操作,用可并堆,注意tag的下传

A1将x点从所在堆中删去,修改权值后再加进去。删除就是合并两棵子树,在将merge后节点的父亲改为x的父亲,返回find(merge后的节点),因为x有可能是根

A2的话在所在堆的堆顶上加tag

A3再开一个变量记录好了

F1 记得将祖先的tag标记pushdown

F2 堆顶+A3

F3 比较复杂,网上很多做法都是在来一棵左偏树,维护各个堆的堆顶。在这里学习了黄学长,用multiset来维护,注意要实时更新里面的信息。

 #include<bits/stdc++.h>
#define inf 1000000000
#define ll long long
#define N 300005
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,Q,overadd,fa[N],tag[N],ls[N],rs[N],v[N],dep[N];
multiset<int> st;
char ch[];
int find(int x){
while(fa[x])x=fa[x];
return x;
}
void pushdown(int x){
if(!tag[x])return;
if(ls[x])tag[ls[x]]+=tag[x],v[ls[x]]+=tag[x];
if(rs[x])tag[rs[x]]+=tag[x],v[rs[x]]+=tag[x];
tag[x]=;
}
int merge(int x,int y){
if(!x||!y)return x+y;
if(v[x]<v[y])swap(x,y);
pushdown(x);
rs[x]=merge(rs[x],y);
fa[rs[x]]=x;
if(dep[ls[x]]<dep[rs[x]])swap(ls[x],rs[x]);
dep[x]=dep[rs[x]]+;
return x;
}
void unite(int x,int y){
int fx=find(x),fy=find(y);
if(fx!=fy){
int t=merge(fx,fy);
if(t==fx)st.erase(st.find(v[fy]));
else st.erase(st.find(v[fx]));
}
}
void Pushdown(int x){
if(fa[x])Pushdown(fa[x]);
pushdown(x);
}
int del(int x){
int t=merge(ls[x],rs[x]),f=fa[x];
ls[x]=rs[x]=fa[x]=;
if(x==ls[f])ls[f]=t;
else rs[f]=t;
fa[t]=f;
return find(t);
}
void add(int x,int val){
Pushdown(x);
st.erase(st.find(v[find(x)]));
v[x]+=val;
st.insert(v[merge(x,del(x))]);
}
void change(int x,int val){
int f=find(x);
tag[f]+=val;v[f]+=val;
st.erase(st.find(v[f]-val));st.insert(v[f]);
}
void getval(int x){
Pushdown(x);
printf("%d\n",v[x]+overadd);
}
int main(){
n=read();
for(int i=;i<=n;i++)v[i]=read(),st.insert(v[i]);
Q=read();
while(Q--){
scanf("%s",ch);
if(ch[]=='A'){
if(ch[]==''){
int x=read(),y=read();add(x,y);
}
else if(ch[]==''){
int x=read(),y=read();change(x,y);
}
else overadd+=read();
}
else if(ch[]=='F'){
if(ch[]=='')getval(read());
else if(ch[]=='')getval(find(read()));
else printf("%d\n",*--st.find(inf)+overadd);
}
else{
int x=read(),y=read();unite(x,y);
}
}
return ;
}

2333: [SCOI2011]棘手的操作

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1621  Solved: 620
[Submit][Status][Discuss]

Description

有N个节点,标号从1到N,这N个节点一开始相互不连通。第i个节点的初始权值为a[i],接下来有如下一些操作:

U x y: 加一条边,连接第x个节点和第y个节点

A1 x v: 将第x个节点的权值增加v

A2 x v: 将第x个节点所在的连通块的所有节点的权值都增加v

A3 v: 将所有节点的权值都增加v

F1 x: 输出第x个节点当前的权值

F2 x: 输出第x个节点所在的连通块中,权值最大的节点的权值

F3: 输出所有节点中,权值最大的节点的权值

Input

输入的第一行是一个整数N,代表节点个数。

接下来一行输入N个整数,a[1], a[2], …, a[N],代表N个节点的初始权值。

再下一行输入一个整数Q,代表接下来的操作数。

最后输入Q行,每行的格式如题目描述所示。

Output

对于操作F1, F2, F3,输出对应的结果,每个结果占一行。

Sample Input

3

0 0 0

8

A1 3 -20

A1 2 20

U 1 3

A2 1 10

F1 3

F2 3

A3 -10

F3

Sample Output

-10

10

10

HINT

对于30%的数据,保证 N<=100,Q<=10000

对于80%的数据,保证 N<=100000,Q<=100000

对于100%的数据,保证 N<=300000,Q<=300000

对于所有的数据,保证输入合法,并且 -1000<=v, a[1], a[2], …, a[N]<=1000

【bzoj2333】 [SCOI2011]棘手的操作 可并堆+lazy标记的更多相关文章

  1. [bzoj2333] [SCOI2011]棘手的操作 (可并堆)

    //以后为了凑字数还是把题面搬上来吧2333 发布时间果然各种应景... Time Limit: 10 Sec  Memory Limit: 128 MB Description 有N个节点,标号从1 ...

  2. 真--可并堆模板--BZOJ2333: [SCOI2011]棘手的操作

    n<=300000个点,开始是独立的,m<=300000个操作: 方法一:单点修改.查询,区间修改.查询?等等等等这里修改是块修改不是连续的啊,那就让他连续呗!具体方法:离线后,每次连接两 ...

  3. BZOJ2333 [SCOI2011]棘手的操作 堆 左偏树 可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2333 题意概括 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i ...

  4. 【bzoj2333】[SCOI2011]棘手的操作 可并堆+STL-set

    UPD:复杂度是fake的...大家还是去写启发式合并吧. 题目描述 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条 ...

  5. 2019.01.17 bzoj2333: [SCOI2011]棘手的操作(启发式合并)

    传送门 启发式合并菜题. 题意:支持与连通块有关的几种操作. 要求支持连边,单点修改,连通块修改,全局修改和单点查值,连通块查最大值和全局最大值. 我们对每个连通块和答案用可删堆维护最大值,然后用启发 ...

  6. BZOJ 2333: [SCOI2011]棘手的操作 可并堆 左偏树 set

    https://www.lydsy.com/JudgeOnline/problem.php?id=2333 需要两个结构分别维护每个连通块的最大值和所有连通块最大值中的最大值,可以用两个可并堆实现,也 ...

  7. BZOJ2333:[SCOI2011]棘手的操作(Splay)

    Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边,连接第x个节点和第y个节点 A1 x v: ...

  8. BZOJ2333 [SCOI2011]棘手的操作 【离线 + 线段树】

    题目 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边,连接第x个节点和第y个节点 A1 x v: 将第x个节点的权 ...

  9. [SCOI2011]棘手的操作(可并堆/并查集/线段树)

    我懒死了 过于棘手 但这题真的很水的说 毕竟写啥都能过 常见思路: ①:由于不强制在线,所以重新编号之后线段树维护 ②:用各种可以高速合并的数据结构,比如可并堆,可并平衡树啥的 讲一种无脑算法: 对于 ...

随机推荐

  1. JS手机浏览器判断(转)

    整理查询一下,js判断手机浏览器的方法 <script type="text/javascript"> /* * 智能机浏览器版本信息:包括微信内置 * */ var ...

  2. 1:A+B Problem

    总时间限制:  1000ms  内存限制:  65536kB 描述 Calculate a + b 输入 Two integer a,,b (0 ≤ a,b ≤ 10) 输出 Output a + b ...

  3. 第十九篇:提高SOUI应用程序渲染性能的三种武器

    SOUI是一套100%开源的基于DirectUI的客户端开发框架. 基于DirectUI设计的UI虽然UI呈现的效果可以很炫,但是相对于传统的win32应用程序中每个控件一个窗口句柄的形式,渲染效率是 ...

  4. Android SDK Manager 中如果没有相应的镜像ARM XX Image

    Android SDK Manager 中如果没有相应的镜像ARM XX Image 处理做法是:先更新 相应版本Android SDK Tools 然后出现 ARM XX Image

  5. Vijos P1459 车展 treap求任意区间中位数

    描述 遥控车是在是太漂亮了,韵韵的好朋友都想来参观,所以游乐园决定举办m次车展.车库里共有n辆车,从左到右依次编号为1,2,…,n,每辆车都有一个展台.刚开始每个展台都有一个唯一的高度h[i].主管已 ...

  6. LeetCode——Reverse Integer(逆置一个整数)

    问题: Reverse digits of an integer. Example1: x = 123, return 321 Example2: x = -123, return –321   Ha ...

  7. 数字信号处理实验(零)—— 一维声音信号处理和二维图像处理

    一.在matlab下声音信号的I/O 1.读wav文件函数 •y = wavread('filename') •[y,Fs,bits] = wavread('filename') •[...] = w ...

  8. 三层+MVC导出Excel(2)

    背景: 出门在外,一切以健康为主,学习为辅,健康搞好了,学习也不能拉下,在外工作期间,我们在做数据导出的时候,自己封了一个类,利用NPOI进行数据导出Excel,自我感觉良好,特给大家分享一下,希望对 ...

  9. JMeter处理jdbc请求后的响应结果

    JMeter如果进行JDBC请求,请求后的响应结果如何给下一个请求用(也就是传说中的关联),于是研究了一下,下面将学习的成果做个记录: 1.添加 "JDBC Connection Confi ...

  10. mysql replace into用法与坑

    需要主键一致 PRIMARY KEY (id) PRIMARY KEY (id, ts) 坑: https://blog.xupeng.me/2013/10/11/mysql-replace-into ...