题目描述

给定一张n个点,m条双向边的无向图。
你要从1号点走到n号点。当你位于x点时,你需要花1元钱,等概率随机地买到与x相邻的一个点的票,只有通过票才能走到其它点。
每当完成一次交易时,你可以选择直接使用那张票,也可以选择扔掉那张票然后再花1元钱随机买另一张票。注意你可以无限次扔票。
请使用最佳的策略,使得期望花的钱数最少。

输入

第一行包含两个正整数n,m(1<=n,m<=300000),表示点数和边数。
接下来m行,每行两个正整数u,v(1<=u,v<=n),表示一条双向边。
输入数据保证无重边、无自环,且1号点一定可以走到n号点。

输出

输出一行一个实数,即最少的期望花费,当绝对或者相对误差不超过10^{-6}时视为正确。

样例输入

5 8
1 2
1 3
1 4
2 3
2 4
3 5
5 4
2 5

样例输出

4.1111111111


题解

期望dp+堆优化Dijkstra

设 $f[i]$ 表示 $i$ 到终点的期望步数,那么有:$f[n]=0\ ,\ f[x]=\frac{\sum\limits_{(x,y)}\text{min}(f[x],f[y])+1}{d[x]}$ ,其中 $d[x]$ 表示 $x$ 的度数。

套路:对于这种 “初始只有一个点的dp值确定、其它点的dp值与其相邻的点有关” 的图上dp,考虑使用类似最短路的方式转移。

初始的时候除了 $n$ 以外,每个点的 $\text{min}(f[x],f[y])$ 都取 $f[x]$ ,dp值为 $+\infty$ 。

然后从 $n$ 号点开始最短路转移:对于当前的点 $i$ ,如果某个相邻的 $j$ 有 $f[j]>f[i]$ ,则对于 $f[j]$ 的计算来说,$\text{min}(f[j],f[i])$ 取 $f[i]$ 更优。此时更新 $j$ 的dp值,并将 $j$ 加入到待用于更新其它点的集合中。

注意到:如果使用 $f[i]$ 将 $f[j]$ 更新为 $f'[j]$ ,那么显然有 $f[i]\le f'[j]\le f[j]$ (等号在 $f[i]=f[j]$ 时取到),满足堆优化Dijkstra的贪心策略(当前最小的一定不会再被更新到更小),因此可以使用dp值小根堆来维护待用于更新其它点的集合,使用类似堆优化Dijkstra的方式转移即可。

最终的答案就是 $f[1]$ 。

时间复杂度 $O(m\log n)$

#include <queue>
#include <cstdio>
#include <algorithm>
#define N 300010
using namespace std;
typedef pair<double , int> pr;
priority_queue<pr> q;
double s[N] , f[N];
int head[N] , to[N << 1] , next[N << 1] , cnt , vis[N] , d[N] , c[N];
inline void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
int main()
{
int n , m , i , x , y;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &x , &y) , add(x , y) , add(y , x) , d[x] ++ , d[y] ++ ;
q.push(pr(0 , n));
while(!q.empty())
{
x = q.top().second , q.pop();
if(vis[x]) continue;
vis[x] = 1;
for(i = head[x] ; i ; i = next[i])
if(!vis[to[i]])
c[to[i]] ++ , s[to[i]] += f[x] , f[to[i]] = (s[to[i]] + d[to[i]]) / c[to[i]] , q.push(pr(-f[to[i]] , to[i]));
}
printf("%lf\n" , f[1]);
return 0;
}

【bzoj5197】[CERC2017]Gambling Guide 期望dp+堆优化Dijkstra的更多相关文章

  1. [BZOJ5197] [CERC2017]Gambling Guide

    [BZOJ5197] [CERC2017]Gambling Guide 题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=5197 Solut ...

  2. 【bzoj1097】[POI2007]旅游景点atr 状压dp+堆优化Dijkstra

    题目描述 FGD想从成都去上海旅游.在旅途中他希望经过一些城市并在那里欣赏风景,品尝风味小吃或者做其他的有趣的事情.经过这些城市的顺序不是完全随意的,比如说FGD不希望在刚吃过一顿大餐之后立刻去下一个 ...

  3. Luogu4745/Gym101620G CERC2017 Gambling Guide 期望、DP、最短路

    传送门--Luogu 传送门--Vjudge 设\(f_x\)为从\(x\)走到\(N\)的期望步数 如果没有可以不动的限制,就是隔壁HNOI2013 游走 如果有可以不动的限制,那么\(f_x = ...

  4. BZOJ5197:[CERC2017]Gambling Guide(最短路,期望DP)

    Description 给定一张n个点,m条双向边的无向图. 你要从1号点走到n号点.当你位于x点时,你需要花1元钱,等概率随机地买到与x相邻的一个点的票,只有通过票才能走到其它点. 每当完成一次交易 ...

  5. 【BZOJ5197】Gambling Guide (最短路,期望)

    [BZOJ5197]Gambling Guide (最短路,期望) 题面 BZOJ权限题 洛谷 题解 假设我们求出了每个点的期望,那么对于一个点,只有向期望更小的点移动的时候才会更新答案. 即转移是: ...

  6. 【bzoj4016】[FJOI2014]最短路径树问题 堆优化Dijkstra+DFS树+树的点分治

    题目描述 给一个包含n个点,m条边的无向连通图.从顶点1出发,往其余所有点分别走一次并返回. 往某一个点走时,选择总长度最短的路径走.若有多条长度最短的路径,则选择经过的顶点序列字典序最小的那条路径( ...

  7. BZOJ 3040 最短路 (堆优化dijkstra)

    这题不是裸的最短路么?但是一看数据范围就傻了.点数10^6,边数10^7.这个spfa就别想了(本来spfa就是相当不靠谱的玩意),看来是要用堆优化dijkstra了.但是,平时写dijkstra时为 ...

  8. UVA - 11374 - Airport Express(堆优化Dijkstra)

    Problem    UVA - 11374 - Airport Express Time Limit: 1000 mSec Problem Description In a small city c ...

  9. BZOJ5415[Noi2018]归程——kruskal重构树+倍增+堆优化dijkstra

    题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 n 个节点.m 条边的无向连通图(节点的编号从 1 至 n).我们依次用 l,a 描述一条边的长度.海 ...

随机推荐

  1. sql语句-2-字符串数字日期时间

  2. [agc004D]Teleporter

    Description 传送门 Solution 依题意我们可以知道,以2-n为出发点的边和1号节点会构成一课树(不然2-n号节点无法都达到首都). 为了让2-n号节点中,离1号节点的距离<k的 ...

  3. 【BZOJ4016】[FJOI2014]最短路径树问题

    [BZOJ4016][FJOI2014]最短路径树问题 题面 bzoj 洛谷 题解 虽然调了蛮久,但是思路还是蛮简单的2333 把最短路径树构出来,然后点分治就好啦 ps:如果树构萎了,这组数据可以卡 ...

  4. 1178: [Apio2009]CONVENTION会议中心

    1178: [Apio2009]CONVENTION会议中心 https://lydsy.com/JudgeOnline/problem.php?id=1178 分析: set+倍增. 首先把所有有包 ...

  5. TCP三次握手和四次挥手以及11种状态

    1.三次握手 置位概念:根据TCP的包头字段,存在3个重要的标识ACK.SYN.FIN ACK:表示验证字段 SYN:位数置1,表示建立TCP连接 FIN:位数置1,表示断开TCP连接 三次握手过程说 ...

  6. Arduino 101/Genuino101使用-第2篇

    1. Arduino 101编程只是在ARC的核心上进行,其具体架构为ARCv2EM.. 2. 而Quark核心,从目前可知的信息来看,其应该运行着名为Zephyr的RTOS 3.101并没有EEPR ...

  7. Python3中IO文件操作的常见用法

    首先创建一个文件操作对象: f = open(file, mode, encoding) file指定文件的路径,可以是绝对路径,也可以是相对路径 文件的常见mode: mode = “r”   # ...

  8. 240. 搜索二维矩阵 II

    二维数组搜索 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target.该矩阵具有以下特性: 每行的元素从左到右升序排列. 每列的元素从上到下升序排列. 示例: 现有矩阵 ...

  9. [转]C#学习笔记15——C#多线程编程

    一.基本概念进程:当一个程序开始运行时,它就是一个进程,进程包括运行中的程序和程序所使用到的内存和系统资源.而一个进程又是由多个线程所组成的.线程:线程是程序中的一个执行流,每个线程都有自己的专有寄存 ...

  10. 详讲H5、WebApp项目中常见的坑以及注意事项

    首先我们中会有一些常用的meta标签,如下: <!--防止手机中网页放大和缩小--> <meta name="viewport" content="wi ...