HDU 6315 Naive Operations(线段树+区间维护)多校题解
题意:a数组初始全为0,b数组题目给你,有两种操作:
思路:dls的思路很妙啊,我们可以将a初始化为b,加一操作改为减一,然后我们维护一个最小值,一旦最小值为0,说明至少有一个ai > bi,那么找出所有为0的给他的最终结果加上一并且重置为bi,维护一个区间和,询问时线段树求和。一开始updateMin没加判断,单个复杂度飙到nlog(n),疯狂TLE...
代码:
#include<cstdio>
#include<vector>
#include<stack>
#include<queue>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#define ll long long
const int maxn = 100000+5;
const int maxm = 100000+5;
const int MOD = 1e7;
const int INF = 0x3f3f3f3f;
using namespace std;
int n,q;
ll Min[maxn<<2],lazy[maxn<<2],sum[maxn << 2],b[maxn];
void push_down(int rt){
if(lazy[rt]){
Min[rt << 1] -= lazy[rt];
Min[rt << 1 | 1] -= lazy[rt];
lazy[rt << 1] += lazy[rt];
lazy[rt << 1 | 1] += lazy[rt];
lazy[rt] = 0;
}
}
void push_up(int rt){
Min[rt] = min(Min[rt << 1],Min[rt << 1 | 1]);
sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
}
void build(int l,int r,int rt){
if(l == r){
lazy[rt] = sum[rt] = 0;
Min[rt] = b[l];
return;
}
int m = (l + r) >> 1;
build(l,m,rt << 1);
build(m + 1,r,rt << 1 | 1);
lazy[rt] = 0;
push_up(rt);
}
void updateMin(int l,int r,int rt){
if(l == r){
if(Min[rt] == 0){
Min[rt] = b[l];
sum[rt]++;
}
return;
}
push_down(rt);
int m = (l + r) >> 1;
if(!Min[rt << 1])
updateMin(l,m,rt << 1);
if(!Min[rt << 1 | 1])
updateMin(m + 1,r,rt << 1 | 1);
push_up(rt);
}
void update(int L,int R,int l,int r,int rt){
if(L <= l && R >= r){
Min[rt]--;
lazy[rt]++;
while(!Min[rt]){
updateMin(l,r,rt);
}
return;
}
push_down(rt);
int m = (l + r) >> 1;
if(L <= m)
update(L,R,l,m,rt << 1);
if(R > m)
update(L,R,m + 1,r,rt << 1 | 1);
push_up(rt);
}
ll query(int L,int R,int l,int r,int rt){
if(L <= l && R >= r){
return sum[rt];
}
//push_down(rt);
ll ans = 0;
int m = (l + r) >> 1;
if(L <= m)
ans += query(L,R,l,m,rt << 1);
if(R > m)
ans += query(L,R,m + 1,r,rt << 1 | 1);
return ans;
}
int main(){
while(~scanf("%d%d",&n,&q)){
for(int i = 1;i <= n;i++)
scanf("%lld",&b[i]);
build(1,n,1);
char s[20];
int l,r;
while(q--){
scanf("%s%d%d",s,&l,&r);
if(s[0] == 'a'){
update(l,r,1,n,1);
}
else{
ll ans = query(l,r,1,n,1);
printf("%lld\n",ans);
}
}
}
return 0;
}
/*
5 12
1 5 2 4 3
add 1 4
query 1 4
add 2 5
query 2 5
add 3 5
query 1 5
add 2 4
query 1 4
add 2 5
query 2 5
add 2 2
query 1 5
*/
HDU 6315 Naive Operations(线段树+区间维护)多校题解的更多相关文章
- HDU 6315 Naive Operations(线段树区间整除区间)
Problem DescriptionIn a galaxy far, far away, there are two integer sequence a and b of length n.b i ...
- 杭电多校第二场 hdu 6315 Naive Operations 线段树变形
Naive Operations Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 502768/502768 K (Java/Other ...
- HDU-DuoXiao第二场hdu 6315 Naive Operations 线段树
hdu 6315 题意:对于一个数列a,初始为0,每个a[ i ]对应一个b[i],只有在这个数字上加了b[i]次后,a[i]才会+1. 有q次操作,一种是个区间加1,一种是查询a的区间和. 思路:线 ...
- HDU - 6315 Naive Operations (线段树+思维) 2018 Multi-University Training Contest 2
题意:数量为N的序列a和b,a初始全为0,b为给定的1-N的排列.有两种操作:1.将a序列区间[L,R]中的数全部+1:2.查询区间[L,R]中的 ∑⌊ai/bi⌋(向下取整) 分析:对于一个位置i, ...
- HDU 6315 Naive Operations(线段树+复杂度均摊)
发现每次区间加只能加1,最多全局加\(n\)次,这样的话,最后的答案是调和级数为\(nlogn\),我们每当答案加1的时候就单点加,最多加\(nlogn\)次,复杂度可以得当保证. 然后问题就是怎么判 ...
- HDU - 6315(2018 Multi-University Training Contest 2) Naive Operations (线段树区间操作)
http://acm.hdu.edu.cn/showproblem.php?pid=6315 题意 a数组初始全为0,b数组为1-n的一个排列.q次操作,一种操作add给a[l...r]加1,另一种操 ...
- hdu 1556 Color the ball(线段树区间维护+单点求值)
传送门:Color the ball Color the ball Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 32768/3276 ...
- hdu Naive Operations 线段树
题目大意 题目链接Naive Operations 题目大意: 区间加1(在a数组中) 区间求ai/bi的和 ai初值全部为0,bi给出,且为n的排列,多组数据(<=5),n,q<=1e5 ...
- HDU 6315.Naive Operations-线段树(两棵树合并)(区间单点更新、区间最值、区间求和)+思维 (2018 Multi-University Training Contest 2 1007)
6315.Naive Operations 题意很好理解,但是因为区间求和求的是向下取整的a[i]/b[i],所以直接分数更新区间是不对的,所以反过来直接当a[i]==b[i]的时候,线段树对应的位置 ...
- HDU 4902 Nice boat --线段树(区间更新)
题意:给一个数字序列,第一类操作是将[l,r]内的数全赋为x ,第二类操作是将[l,r]中大于x的数赋为该数与x的gcd,若干操作后输出整个序列. 解法: 本题线段树要维护的最重要的东西就是一个区间内 ...
随机推荐
- JS-键盘事件之方向键移动元素
注意三点: 1:事件名称onkeydown. 2:事件加给document,而非window. 3: 把元素的top,left值分别用offsetTop,offsetLeft来设定. <!DOC ...
- 静态资源的gzip
1.项目中,接触到gzip.未压缩的文件和压缩后的文件的比例可能达到:3:1.所以,gzip是网络中文件高速传输的很好方法. 2.一般js.css.html文件都会在后端进行gzip.当浏览器请求这些 ...
- 关于用phonegap 3.0+ 打包后sencha touch按钮点击切换动画延迟接近一秒的以及界面闪烁的解决方案
android的webview对硬件加速的支持貌似很不理想,在开启硬件加速的情况下,css3这些需要调用硬件加速的样式会大幅拖慢html5的webapp,在htc的部分手机上还会因开启硬件加速而导致闪 ...
- COGS 1224. [SHOI2002]百事世界杯之旅(期望概率)
COGS 1224. [SHOI2002]百事世界杯之旅 ★ 输入文件:pepsi.in 输出文件:pepsi.out 简单对比 时间限制:1 s 内存限制:128 MB [问题描述] ...
- angularJS指令系统---Directive
指令:Directive angularJS 有一套完整的,可拓展的,用来帮助web应用开发的指令集: 在建立DOM期间,和HTML关联着的指令会被检测到,并被执行: 在angularJS中将前缀为 ...
- html<input>输入框中各种正则表达式设置
<%@ page language="java" contentType="text/html; charset=gb2312" pageEncoding ...
- 当url作为id时的删除
API Documentation — Elasticsearch 6.3.1 documentation https://elasticsearch-py.readthedocs.io/en/mas ...
- Python开发【Django】:组合搜索、JSONP、XSS过滤
组合搜索 做博客后台时,需要根据文章的类型做不同的检索 1.简单实现 关联文件: from django.conf.urls import url from . import views urlpat ...
- python 面向对象 公有属性 用在哪里
公有属性也可以叫做静态字段 如果每个对象都有一个共同的值 , 应该把它设置为公有属性 公有属性使用场景,每个对象中保存相同的东西时,可以使用公有属性 类找公有属性 过程
- C#+GDAL读取影像(1)
环境:VS2010,C#,GDAL1.7 读取影像: using System; using System.Collections.Generic; using System.ComponentMod ...