【BZOJ3142】[HNOI2013]数列

题面

洛谷

bzoj

题解

设第\(i\)天的股价为\(a_i\),记差分数组\(c_i=a_{i+1}-a_i\)

\[Ans=\sum_{c_1=1}^M\sum_{c_2=1}^M\sum_{c_3=1}^M...\sum_{c_{k-1}=1}^M(N-\sum_{i=1}^{k-1}c_i)\\
=N*M^{k-1}-\sum_{c_1=1}^M\sum_{c_2=1}^M\sum_{c_3=1}^M...\sum_{c_{k-1}=1}^M\sum_{i=1}^{k-1}c_i\\
=N*M^{k-1}-\sum_{i=1}^{k-1}\sum_{c_1=1}^M\sum_{c_2=1}^M\sum_{c_3=1}^M...\sum_{c_{k-1}=1}^Mc_i\\
=N*M^{k-1}-\sum_{i=1}^{k-1}\sum_{c_i=1}^M c_i*M^{k-2}\\
=N*M^{k-1}-(k-1)*M^{k-2}*\frac {(1+M)*M}2
\]

此题完结。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
ll N, K, M, Mod;
ll fpow(ll x, ll y) {
ll res = 1;
while (y) {
if (y & 1ll) res = res * x % Mod;
x = x * x % Mod;
y >>= 1ll;
}
return res;
}
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
cin >> N >> K >> M >> Mod;
N %= Mod, --K;
cout << ((N * fpow(M, K) % Mod - K * fpow(M, K - 1) % Mod * (M * (M + 1) / 2 % Mod) % Mod) % Mod + Mod) % Mod << endl;
return 0;
}

【BZOJ3142】[HNOI2013]数列的更多相关文章

  1. [BZOJ3142][HNOI2013]数列(组合数学)

    3142: [Hnoi2013]数列 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1721  Solved: 854[Submit][Status][ ...

  2. BZOJ3142 [Hnoi2013]数列

    Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...

  3. bzoj千题计划293:bzoj3142: [Hnoi2013]数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=3142 如果已知数列的差分数列a[1]~a[k-1] 那么这种差分方式对答案的贡献为 N-Σ a[i] ...

  4. BZOJ3142 HNOI2013数列(组合数学)

    考虑差分序列.每个差分序列的贡献是n-差分序列的和,即枚举首项.将式子拆开即可得到n*mk-1-Σi*cnt(i),cnt(i)为i在所有差分序列中的出现次数之和.显然每一个数出现次数是相同的,所以c ...

  5. BZOJ3142 [Hnoi2013]数列 【组合数学】

    题目链接 BZOJ3142 题解 题意:选一个正整数和\(K - 1\)个\([1,M]\)中的数,使得总和小于等于\(N\),求方案数模\(P\) 题目中\(K(M - 1) < N\)的限制 ...

  6. [BZOJ3142][HNOI2013]数列(组合)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3142 分析: 考虑差值序列a1,a2,...,ak-1 那么对于一个确定的差值序列,对 ...

  7. bzoj3142[Hnoi2013]数列 组合

    Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...

  8. 【BZOJ3142】[HNOI2013]数列(组合计数)

    [BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...

  9. [洛谷P3228] [HNOI2013]数列

    洛谷题目链接:[HNOI2013]数列 题目描述 小T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察到: ...

随机推荐

  1. 粒子群优化算法PSO及matlab实现

    算法学习自:MATLAB与机器学习教学视频 1.粒子群优化算法概述 粒子群优化(PSO, particle swarm optimization)算法是计算智能领域,除了蚁群算法,鱼群算法之外的一种群 ...

  2. tcp 面向连接

    TCP通信时通过三次握手建立连接,这个连接不是虚拟链路,每个IP报文是要寻址,通过路由转发的 那建立的这个连接能够起什么作用啊,感觉建立这个连接和不建立这个连接的效果是一样的啊!因为除去可靠性等机制, ...

  3. 3504. [CQOI2014]危桥【最大流】

    Description Alice和Bob居住在一个由N座岛屿组成的国家,岛屿被编号为0到N-1.某些岛屿之间有桥相连,桥上的道路是双 向的,但一次只能供一人通行.其中一些桥由于年久失修成为危桥,最多 ...

  4. cocos2d-x中关于打包成APK的问题

    转载自:http://blog.csdn.net/u013315178/article/details/51254630 之前在网上看了很多的帖子大多数用ide 来打包 太麻烦了 而且一般没有人现场指 ...

  5. ssti记录

    先看个python沙箱: #!/usr/bin/env python from __future__ import print_function print("Welcome to my P ...

  6. linux命令使用总结

    ## linux 查看系统全部信息 uname -a ## linux 查看系统内核信息 uname -r ## linux 查看系统版本号信息 cat /etc/redhat-release ## ...

  7. Jquery mobile 自定义 返回按钮 data-rel="back"

    data-rel="back" 第一个页面 主页面 studentmaster.html  通过下面js脚本跳转到详情页面 window.location.href="s ...

  8. 更有效率的使用Visual Studio

    工欲善其事,必先利其器.虽然说Vim和Emacs是神器,但是对于使用Visual Studio的程序员来说,我们也可以通过一些快捷键和潜在的一些功能实现脱离鼠标写代码,提高工作效率,像使用Vim一样使 ...

  9. Redis的安装和部署(windows )

    Redis是一个开源的试用ANSI C语言编写的.遵守BSD协议.支持网络.可基于内存可持久化的日志型.key-value数据库.通常被称为数据结构服务器. redis的数据类型有:字符串(strin ...

  10. 提交json串格式的POST请求

    提交json串格式的POST请求 Action() { web_reg_save_param("retCode", "LB=retCode\":\"& ...