【BZOJ3142】[HNOI2013]数列
【BZOJ3142】[HNOI2013]数列
题面
题解
设第\(i\)天的股价为\(a_i\),记差分数组\(c_i=a_{i+1}-a_i\)
则
=N*M^{k-1}-\sum_{c_1=1}^M\sum_{c_2=1}^M\sum_{c_3=1}^M...\sum_{c_{k-1}=1}^M\sum_{i=1}^{k-1}c_i\\
=N*M^{k-1}-\sum_{i=1}^{k-1}\sum_{c_1=1}^M\sum_{c_2=1}^M\sum_{c_3=1}^M...\sum_{c_{k-1}=1}^Mc_i\\
=N*M^{k-1}-\sum_{i=1}^{k-1}\sum_{c_i=1}^M c_i*M^{k-2}\\
=N*M^{k-1}-(k-1)*M^{k-2}*\frac {(1+M)*M}2
\]
此题完结。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
ll N, K, M, Mod;
ll fpow(ll x, ll y) {
ll res = 1;
while (y) {
if (y & 1ll) res = res * x % Mod;
x = x * x % Mod;
y >>= 1ll;
}
return res;
}
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
cin >> N >> K >> M >> Mod;
N %= Mod, --K;
cout << ((N * fpow(M, K) % Mod - K * fpow(M, K - 1) % Mod * (M * (M + 1) / 2 % Mod) % Mod) % Mod + Mod) % Mod << endl;
return 0;
}
【BZOJ3142】[HNOI2013]数列的更多相关文章
- [BZOJ3142][HNOI2013]数列(组合数学)
3142: [Hnoi2013]数列 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1721 Solved: 854[Submit][Status][ ...
- BZOJ3142 [Hnoi2013]数列
Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...
- bzoj千题计划293:bzoj3142: [Hnoi2013]数列
http://www.lydsy.com/JudgeOnline/problem.php?id=3142 如果已知数列的差分数列a[1]~a[k-1] 那么这种差分方式对答案的贡献为 N-Σ a[i] ...
- BZOJ3142 HNOI2013数列(组合数学)
考虑差分序列.每个差分序列的贡献是n-差分序列的和,即枚举首项.将式子拆开即可得到n*mk-1-Σi*cnt(i),cnt(i)为i在所有差分序列中的出现次数之和.显然每一个数出现次数是相同的,所以c ...
- BZOJ3142 [Hnoi2013]数列 【组合数学】
题目链接 BZOJ3142 题解 题意:选一个正整数和\(K - 1\)个\([1,M]\)中的数,使得总和小于等于\(N\),求方案数模\(P\) 题目中\(K(M - 1) < N\)的限制 ...
- [BZOJ3142][HNOI2013]数列(组合)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3142 分析: 考虑差值序列a1,a2,...,ak-1 那么对于一个确定的差值序列,对 ...
- bzoj3142[Hnoi2013]数列 组合
Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...
- 【BZOJ3142】[HNOI2013]数列(组合计数)
[BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...
- [洛谷P3228] [HNOI2013]数列
洛谷题目链接:[HNOI2013]数列 题目描述 小T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察到: ...
随机推荐
- C++中在子类实现父类的方法调用
- Appfuse搭建过程(下源代码不须要maven,lib直接就在项目里(否则痛苦死!))
什么是Appfuse:AppFuse是一个集成了众多当前最流行开源框架与工具(包含Hibernate.ibatis.Struts.Spring.DBUnit.Maven.Log4J.Struts Me ...
- Convolution1D与Convolution2D区别
以下是Convolution1D的例子: # apply a convolution 1d of length 3 to a sequence with 10 timesteps, # with 64 ...
- git命令将本地代码提交到github
git命令将本地代码提交到github 步骤: 第一步:进入到相应的文件夹,用git init命令,将该文件夹变成git可管理的仓库 git init 第二步:将项目添加到本地仓库 可以用git st ...
- Dubbo实践(一)入门示例
dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案.简单的说,dubbo就是个服务框架,如果没有分布式的需求,其实是不需要用的,只有在分布式的时候 ...
- C# 处理json字符串中image数据(byte)Base64
static void Main(string[] args) { string factString = "中华人民共和国"; byte[] myByte; str ...
- SQLSERVER 使用 ROLLUP 汇总数据,实现分组统计,总计(合计),小计
版权声明:本文为博主原创文章,未经博主允许不得转载.本人观点或有不当之处,请在评论中及时指正,我会在第一时间内修改. https://blog.csdn.net/aiming66/article/de ...
- Java工具-----native2ascii
概述 native2ascii.exe位于%JAVA_HOME/bin目录下,所以要使用,得先安装JDK. 该工具用来将本地编码转换为Unicode,英文字母.阿拉伯数字不会转化. 官方文档:http ...
- 无缘DELPHI的BUG
有个很简单的小错误,看一眼好象是DELPHI的BUG,结果找了一个晚上,后面才发现出错还是自己造成的原因. CLIENTDATASET.LOCATE ! 以为它工作出问题了,后来仔细比对,原来有个数据 ...
- python学习第二天 -----2019年4月17日
第二周-第02章节-Python3.5-模块初识 #!/usr/bin/env python #-*- coding:utf-8 _*- """ @author:chen ...