A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N. No two places have the same number. The lines are bidirectional and always connect together two places and in each place the lines end in a telephone exchange. There is one telephone exchange in each place. From each place it is possible to reach through lines every other place, however it need not be a direct connection, it can go through several exchanges. From time to time the power supply fails at a place and then the exchange does not operate. The officials from TLC realized that in such a case it can happen that besides the fact that the place with the failure is unreachable, this can also cause that some other places cannot connect to each other. In such a case we will say the place (where the failure occured) is critical. Now the officials are trying to write a program for finding the number of all such critical places. Help them.

Input

The input file consists of several blocks of lines. Each block describes one network. In the first line of each block there is the number of places N < 100. Each of the next at most N lines contains the number of a place followed by the numbers of some places to which there is a direct line from this place. These at most N lines completely describe the network, i.e., each direct connection of two places in the network is contained at least in one row. All numbers in one line are separated by one space. Each block ends with a line containing just 0. The last block has only one line with N = 0.

Output

The output contains for each block except the last in the input file one line containing the number of critical places.

Sample Input

5
5 1 2 3 4
0
6
2 1 3
5 4 6 2
0
0

Sample Output

1
2

题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=251

题意:有n个电话,有一些线连接在他们之间,有的电话如果不能工作了,则可能导致,n个电话不连通了,求出这样的电话又几个,其实就是求割点有多少个

#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
#define maxn 10005
int dfn[maxn];///代表最先遍历到这个点的时间
int low[maxn];///这个点所能到达之前最早的时间点
int Father[maxn];///保存这个节点的父亲节点
int n, m, Time, top;///Time 时间点, top用于栈操作
vector<vector<int> > G; void Init()
{
G.clear();
G.resize(n+1);
memset(low, 0, sizeof(low));
memset(dfn, 0, sizeof(dfn));
memset(Father, 0, sizeof(Father));
Time = 0;
} void Tarjan(int u,int fa)
{
low[u] = dfn[u] = ++Time;
Father[u] = fa;
int len = G[u].size(), v; for(int i=0; i<len; i++)
{
v = G[u][i]; if(!dfn[v])
{
Tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else if(fa != v)///假如我们在这里写上了 low[u] = min(low[v], low[u]),那么就相当于我们由v回到了v之前的节点
low[u] = min(dfn[v], low[u]);
}
}
void solve()
{/**
求割点
一个顶点u是割点,当且仅当满足(1)或(2)
(1) u为树根,且u有多于一个子树。
(2) u不为树根,且满足存在(u,v)为树枝边(或称 父子边,即u为v在搜索树中的父亲),使得 dfn(u)<=low(v)。
(也就是说 V 没办法绕过 u 点到达比 u dfn要小的点)
注:这里所说的树是指,DFS下的搜索树*/
int RootSon = 0, ans = 0;///根节点儿子的数量
bool Cut[maxn] = {false};///标记数组,判断这个点是否是割点 Tarjan(1,0); for(int i=2; i<=n; i++)
{
int v = Father[i];
if(v == 1)///也是就说 i的父亲是根节点
RootSon ++;
else if(dfn[v] <= low[i])
Cut[v] = true;
} for(int i=2; i<=n; i++)
{
if(Cut[i])
ans ++;
}
if(RootSon > 1)
ans++; printf("%d\n", ans);
}
int main()
{
while(scanf("%d", &n), n)
{
int a, b;
char ch;
Init();
while(scanf("%d", &a), a)
{
while(scanf("%d%c",&b,&ch))
{
G[a].push_back(b);
G[b].push_back(a);
if(ch == '\n')
break;
}
}
solve();
}
return 0;
}

  


B - Network---UVA 315(无向图求割点)的更多相关文章

  1. B - Network - uva 315(求割点)

    题意:给一个无向连通图,求出割点的数量. 首先输入一个N(多实例,0结束),下面有不超过N行的数,每行的第一个数字代表后面的都和它存在边,0表示行输入的结束(很蛋疼的输入方式). 分析:割点的模板题 ...

  2. Network UVA - 315 无向图找割点

    题意: 给你一个无向图,你需要找出来其中有几个割点 割点/割项: 1.u不为搜索起点,low[v]>=dfn[u] 2.u为搜索起点,size[ch]>=2 3.一般情况下,不建议在tar ...

  3. Network UVA - 315(求割点)

    #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> ...

  4. UVA 315 Network (模板题)(无向图求割点)

    <题目链接> 题目大意: 给出一个无向图,求出其中的割点数量. 解题分析: 无向图求割点模板题. 一个顶点u是割点,当且仅当满足 (1) u为树根,且u有多于一个子树. (2) u不为树根 ...

  5. uva 315 Network(无向图求割点)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  6. 无向图求割点 UVA 315 Network

    输入数据处理正确其余的就是套强联通的模板了 #include <iostream> #include <cstdlib> #include <cstdio> #in ...

  7. poj 1144 Network 无向图求割点

    Network Description A Telephone Line Company (TLC) is establishing a new telephone cable network. Th ...

  8. (连通图 模板题 无向图求割点)Network --UVA--315(POJ--1144)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. kuangbin专题 专题九 连通图 Network UVA - 315

    题目链接:https://vjudge.net/problem/UVA-315 题目:求割点. #include <iostream> #include <cstdio> #i ...

随机推荐

  1. 【复杂】CentOS 6.4下PXE+Kickstart无人值守安装操作系统

    一.简介 1.1 什么是PXE PXE(Pre-boot Execution Environment,预启动执行环境)是由Intel公司开发的最新技术,工作于Client/Server的网络模式,支持 ...

  2. 【C++基础 05】友元函数和友元类

    友元是一种定义在类外部的普通函数或类,但它须要在类体内进行说明,为了与该类的成员函数加以差别,在说明时前面加以keywordfriend. 友元不是成员函数,可是它能够訪问类中的私有成员. 友元的作用 ...

  3. [转]NMON服务器监控、指标说明

    一.NMON中的各项参数指标: SYS_SUMM:显示当前服务器的总体性能情况 Total System I/OStatistics:Avg tps during an interval:显示采集间隔 ...

  4. mysqldump备份时,--master-data选项的作用是什么?

    需求描述: 今天在研究mysql的备份和恢复,使用mysqldump备份数据库时,用到--master-data选项, 在此,测试并记录选项的作用 测试过程: 1.不使用--master-data进行 ...

  5. C++ 对象间的赋值与拷贝构造函数

    1.对象间的赋值 /***A.h文件***/ #pragma once class A { public: int va; A(void); A(char* name); A(const A& ...

  6. Android Studio右下角不显示当前branch名称

    当一个project刚从git server端clone下来并open后,或许你会发如今Android Studio的右下角看不到当前是哪个branch的信息.例如以下图: 原因分析:不显示的原因是由 ...

  7. Effective C++ —— 资源管理(三)

    条款13 : 以对象管理资源 假设有如下代码: Investment* createInvestment(); //返回指针,指向Investment继承体系内的动态分配对象,调用者有责任删除它 vo ...

  8. php和mySQL结合使用

    首先,我建立了一个名为class的表,里面有cid,cname,cnum,我想用php代码来实现这一效果,步骤如下: 1.链接数据库 mysqli_set_charset($coon,"ut ...

  9. NSData 方法

    /****************Immutable Data****************/ @interface NSData : NSObject <NSCopying, NSMutab ...

  10. ecplise部署gradle web项目

    gradle项目结构图: build.gradle apply plugin: 'java' apply plugin: 'war' //用来生成war apply plugin: 'eclipse- ...