题意:

  每天晚上你都玩纸牌,如果第一次就赢了,就高高兴兴的去睡觉,如果输了就继续玩。假如每盘游戏你获胜的概率都为p,每盘游戏输赢独立。如果当晚你获胜的局数的比例严格大于p时才停止,而且每天晚上最多只能玩n局,如果获胜比例一直不超过p的话,以后就再也不玩纸牌了。问在平均情况下,你会玩多少个晚上纸牌。

解析:

  求出一天的就完蛋的概率P,然后符合超几何分布,则期望的天数即为1/P

设dp[i][j]为前i次游戏 j次成功的概率  则 dp[i][j] = dp[i-1][j-1]*p + dp[i-1][j]*(1-p);

最后累加P = dp[n][1] + dp[n][2] + ```````  一直加到成功的次数除n 等于给出的p 即可

然后输出1/P

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(a, n) for(int i=a; i<=n; i++)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
double dp[][]; int main()
{
int T, kase = ;
cin>> T;
while(T--)
{
mem(dp, );
double a, b;
int n;
scanf("%lf/%lf%d", &a, &b, &n);
double p = a/(double) b;
dp[][] = , dp[][] = ;
rap(, n)
{
for(int j=; j*b <= a*i; j++) //等价于枚举满足j/i <= a/b 的j, 但避免了误差
{
dp[i][j] = dp[i-][j] * (-p);
if(j) dp[i][j] += dp[i-][j-] * p; //防止越界
}
}
double P = 0.0;
for(int j=; j*b <= a*n; j++)
P += dp[n][j]; printf("Case #%d: %d\n", ++kase, (int)(/P)); } return ;
}

Expect the Expected UVA - 11427(概率dp)的更多相关文章

  1. UVa 11427 Expect the Expected (数学期望 + 概率DP)

    题意:某个人每天晚上都玩游戏,如果第一次就䊨了就高兴的去睡觉了,否则就继续直到赢的局数的比例严格大于 p,并且他每局获胜的概率也是 p,但是你最玩 n 局,但是如果比例一直超不过 p 的话,你将不高兴 ...

  2. UVA 11427 (概率DP+期望)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35396 题目大意:每晚打游戏.每晚中,赢一局概率p,最多玩n局, ...

  3. UVa 11427 (期望 DP) Expect the Expected

    设d(i, j)表示前i局每局获胜的比例均不超过p,且前i局共获胜j局的概率. d(i, j) = d(i-1, j) * (1-p) + d(i-1, j-1) * p 则只玩一天就就不再玩的概率Q ...

  4. uva 12723 概率dp

    Dudu is a very starving possum. He currently stands in the first shelf of a fridge. This fridge isco ...

  5. UVA 11427 - Expect the Expected(概率递归预期)

    UVA 11427 - Expect the Expected 题目链接 题意:玩一个游戏.赢的概率p,一个晚上能玩n盘,假设n盘都没赢到总赢的盘数比例大于等于p.以后都不再玩了,假设有到p就结束 思 ...

  6. uva 11427 - Expect the Expected(概率)

    题目链接:uva 11427 - Expect the Expected 题目大意:你每天晚上都会玩纸牌,每天固定最多玩n盘,每盘胜利的概率为p,你是一个固执的人,每天一定要保证胜局的比例大于p才会结 ...

  7. 11427 - Expect the Expected(概率期望)

    11427 - Expect the Expected Some mathematical background. This problem asks you to compute the expec ...

  8. [uva 11762]Race to 1[概率DP]

    引用自:http://hi.baidu.com/aekdycoin/item/be20a91bb6cc3213e3f986d3,有改动 题意: 已知D, 每次从[1,D] 内的所有素数中选择一个Ni, ...

  9. UVA 10900 So you want to be a 2n-aire? (概率dp)

    题意:玩家初始的金额为1:给出n,表示有n道题目:t表示说答对一道题目的概率在t到1之间均匀分布. 每次面对一道题,可以选择结束游戏,获得当前奖金:或者回答下一道问题,答对的话奖金翻倍,答错的话结束游 ...

随机推荐

  1. CF833D Red-Black Cobweb

    题面 题解 点分治大火题... 设白边数量为$a$,黑边为$b$,则$2min(a,b)\geq max(a,b)$ 即$2a\geq b\;\&\&2b\geq a$ 考虑点分治时如 ...

  2. python 内置模块(hash lib)

    用于加密相关的操作,代替了md5模块和sha模块,主要提供 SHA1, SHA224, SHA256, SHA384, SHA512 ,MD5 算法 MD5 import hashlib hash=h ...

  3. 【转】ERROR 2003 (HY000): Can't connect to MySQL server on '192.168.1.165' (113)

    原文转自:http://blog.csdn.net/chengyuqiang/article/details/54285857 1.程序报错: com.mysql.jdbc.exceptions.jd ...

  4. linux中匹配正确的ip地址

    1.假设IP地址是规范的,没有出错误的 sed -n "/[0-9]\{1,3\}.[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}/p" test ...

  5. RHCE6.0上午的考试一键完成

    #!/sbin/bash # #initial envirment #variable define IPADDR=192.168.0.12 NETMASK=255.255.255.0 HOSTNAM ...

  6. Tensorflow - Implement for a Convolutional Neural Network on MNIST.

    Coding according to TensorFlow 官方文档中文版 中文注释源于:tf.truncated_normal与tf.random_normal TF-卷积函数 tf.nn.con ...

  7. Python多重赋值

    可以将变量名视对象的一个链接 >>>foo1 = foo2 = 4.3 >>>foo1 is foo2 True >>>foo1 = 4.3 &g ...

  8. Selenium WebDriver 下 plugin container for firefox has stopped working

    用selenium 的webdriver 和 firefox 浏览器做自动化测试,经常会出现 plugin container for firefox has stopped working 如下图所 ...

  9. asp.net mvc 使用Ajax调用Action 返回数据【转】

      使用asp.net mvc 调用Action方法很简单. 一.无参数方法. 1.首先,引入jquery-1.5.1.min.js 脚本,根据版本不同大家自行选择. <script src=& ...

  10. 点滴拾遗 - 自定义 Format 控制 String.Format 行为

    点击下载示例代码 String.Format 一重载方法的签名如下 public static string Format( IFormatProvider provider, string form ...